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Preface 

Since the summer of 1992, the Soar/IFOR research group has been building intelligent automated agents 
for tactical air simulation. The Soar/IFOR research project exists at three sites, the University of 
Michigan, the University of Southern California, and Carnegie Mellon University. The ultimate goal of 
this project is to develop automated pilots whose behavior in simulated engagements is indistinguishable 
from that of human pilots. Our work has concentrated on developing agents for a variety of air-to-air 
and air-to-ground missions. 

This technical report is a collection of the research papers that have been generated from this project 
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Soar/IFOR project, Spring 1994", Johnson, W. L, et al., Technical Reports CSE-TR-207-94 from the 
Department of Electrical Engineering and Computer Science, University of Michigan; IS1/SR-94-379 
from the University of Southern California Information Sciences Institute; and CMU-CS-94-134 from 
Carnegie Mellon University. The best overview of this project was published separately as 
"Intelligent Agents for Interactive Simulation Environments", by Tambe, M., Johnson, W. L., Jones, R. 
M., Koss, F., Laird, J. E., Rosenbloom, P. S. and Schwamb, K., in AI Magazine, 16(1), 1995. 

The research covered in these papers spans a wide spectrum of issues in agent development such as 
learning [2], planning [3], coordination, and command and control [4,6], natural language processing 
[5], agent tracking [7,8,9] and piloting rotary wing aircraft [10]. 

The papers are organized by having the overview paper first followed by all of the other papers in 
alphabetic order by author. 
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1    Abstract 

For the last three years, the Soar/IFOR 
group has been developing intelligent forces for 
distributed interactive simulation environments. 
Since early 1994, our efforts have been focused on 
developing computer generated forces for air mis- 
sions including both fixed wing and rotary wing 
aircraft. This paper reviews the current state of 
the Soar/IFOR project and discusses the results 
of a preliminary trial of our agents in STOW-E, 
a precursor to STOW-97. 

2    Introduction 

The goal of the Soar/IFOR project is to de- 
velop human-like synthetic agents for populating 
interactive distributed simulation environments. 
In contrast to the standard semi-automated forces 
(SAF) approach, where it is assumed that some 
higher-level authority, such as a human or a com- 
puterized command force (CFOR), will be re- 
sponsible for all decisions requiring judgement, 
our approach is to endow all entities with knowl- 
edge and decision making abilities similar to those 
found in humans performing similar tasks. Our 
hypothesis, confirmed in part by our participation 
in a large scale simulated exercise called STOW- 
E, is that building intelligent forces provides a 
payoff in terms of increasing the fidelity of the 
agents' behavior, while decreasing the complex- 
ity of commanding the agents. 

From 1992 through early 1994, our efforts were 
focussed on research and development for be- 

yond visual range air-to-air combat leading to 
the creation of TacAir-Soar [Jones et at, 1993; 
Rosenbloom et al., 1994; Tambe et o/., 1995a]. 
In early 1994, we broadened our horizon signif- 
icantly, and we are now working on developing 
automated synthetic pilots for the majority of air 
missions flown in the U.S. military. The var- 
ious missions include air-to-air (defensive com- 
bat air patrols, sweeps), air-to-ground (close air 
support, interdiction, strategic attack), air-to- 
surface, rotary wing (anti-armor), as well as some 
support missions (refueling, resupply, etc). We 
are also developing additional agents, such as air 
and ground controllers, that communicate with 
the agents flying in planes and helicopters during 
their missions. We will refer to all the agents 
being developed by the Soar/IFOR project as 
Air-IFOR agents, while TacAir-Soar refers to the 
agents that fly tactical fixed wing aircraft. 

During the last year, we have made progress 
on many of these missions, and in this paper we 
will review all aspects of the existing Soar/IFOR 
agents, including: the interaction between Air- 
IFOR agents and DIS, the design of Air-IFOR 
agents, their capabilities, the interactions be- 
tween multiple Air-IFOR agents, and the partic- 
ipation of Air-IFOR agents in STOW-E. 

3    Interaction with DIS 

Since the inception of the Soar/IFOR project, 
our goal has been to create an abstract interface 
layer between Air-IFOR agents and the underly- 
ing simulation (DIS) environment.  We call this 



the "virtual cockpit" abstraction, meaning that 
Air-IFOR agents should have an interface that 
supports the types of interactions a pilot has in 
the cockpit of a plane or helicopter (Schwamb et 
al., 1994]. Thus, Air-IFOR agents are isolated 
from the details of the underlying simulation envi- 
ronment, network protocol, plane dynamics, sen- 
sor simulation, etc. Currently, we use ModSAF 
[Calder et al., 1993] as the underlying software 
which provides connectivity to the DIS environ- 
ment as well as simulations of the vehicle dynam- 
ics, sensors, weapons, and communication (radio) 
systems. To support the virtual cockpit, we have 
added C code, which defines a Soar/ModSAF In- 
terface (SMI){Schwamb et al., 1994]. The SMI 
makes all of the appropriate calls to the underly- 
ing ModSAF functions so that Air-IFOR agents 
get access to the appropriate sensor and weapons 
systems. The SMI does not use ModSAF tasks 
or taskframes, but instead relies on lower level 
functions which gives Air-IFOR agents finer-grain 
control of their own behavior. 

Air-IFOR agents are built within the Soar ar- 
chitecture [Laird et al., 1987; Laird and Rosen- 
bloom, 1994; Rosenbloom et al., 1991; Rosen- 
bloom et al., 1993]. Soar, the SML, and Mod- 
SAF are integrated (within the same Unix pro- 
cess) so that each Soar/IFOR agent gets "ticked" 
during the simulation cycle. Using this arrange- 
ment, we can run multiple, independent agents 
on a single Unix workstation, as well as having 
agents on many different machines — although a 
single agent is not distributed across multiple ma- 
chines. Air-IFOR agents do not share data except 
through explicit communication using simulated 
radios. 

As part of building the SMI, we have ex- 
tended the standard suite of ModSAF sensors and 
weapons, adding such devices as a CCIP (con- 
tinuously computed impact point) which displays 
where a bomb will hit if released, a waypoint com- 
puter which displays the appropriate heading to 
fly to the next waypoint in a flight plan, air-to- 
surface missiles (such as the Exocet), and a prim- 
itive form of precision-guided munitions. 

One result of our development has been the 
recognition that the closer we model the types 
of information available to humans, not at the 
level of visual perception, but instead at the level 
of symbolic data, the easier it is to model the 
behavior of the humans. For example, we discov- 
ered that creating a waypoint computer and the 
CCIP greatly reduced the reasoning required by 
the Soar agents because they no longer had to re- 
spond to every change in their position relative to 
a waypoint or target. Instead they could respond 
to the changes in the heading suggested by the 
waypoint computer or CCIP. 

A problem we foresee in the future is the man- 

agement of many Soar/IFOR agents during a pro- 
tracted exercise. The problem is not in terms of 
command and control (covered in the section on 
multiagent interactions), but is in terms of man- 
aging the creation, reuse, and destruction of Air- 
IFOR agents on many different workstations. To 
this end, as well as to support cleaner interfaces 
to Soar agents, we have integrated Soar with Tel 
[Ousterhout, 1994], a scripting language, that will 
help support agent management across many ma- 
chines. 

4    Agent Design 

The overall design of Air-IFOR agents has not 
changed significantly over the last year, although 
it has been refined and augmented with new tools. 
Nor have the basic requirements of Air-IFOR 
agents changed. They continue to be the follow- 
ing: 

1. Encode large bodies of knowledge about rel- 
evant aspects of the world, including tactics, 
doctrine, sensors, weapons, etc. 

2. React quickly to the environment, such as 
the behavior of enemy planes, communications 
from other friendly agents, and changes in ter- 
rain being traversed. 

3. Determine the tactically relevant features of a 
complex, dynamic environment. 

4. Coordinate behavior with other agents. 
5. Use minimal computational resources. 
6. Deliberately plan aspects of missions not spec- 

ified in orders. 

4.1    Method and Approach 
All of the Soar/IFOR agents are developed within 
the Soar architecture. Soar has its roots in early 
AI symbolic systems such as LT [Newell and Si- 
mon, 1956], and GPS [Ernst and Newell, 1969], as 
well as rule-based systems, such as OPS5 [Forgy, 
1982]. Soar supports the above requirements by 
providing two integrated levels of computation: 
deliberate, sequential operators within problem 
spaces, and automatic parallel rules. In terms 
of the tasks that have to be performed by Air- 
IFOR agents, it is easiest to. think in terms of 
the first level, operators. We make the claim that 
sequences of deliberate operators are the most ap- 
propriate way to model the second to second be- 
havior of a pilot (or any human for that matter). 
Example operators include flying a mission, pick- 
ing a control point to fly to, intercepting a ban- 
dit, entering a waypoint into the plane's waypoint 
computer, deciding which missile to fire, physi- 
cally selecting that missile, pushing the fire but- 
ton, and so on. Some of these are purely mental 
operators, such as deciding which missile to se- 
lect, while others include physical actions. Many 



of these operators cannot be performed directly as 
a single act, but instead must be decomposed into 
subgoals where finer-grain operators are selected 
and applied. For example, the act of intercepting 
a bandit is decomposed into many different op- 
erators, such as achieving proximity, employing 
weapons, and so forth. 

Thus, Soar organizes the doctrine and tactics of 
flying missions in planes and helicopters in terms 
of hierarchies of operators. For a given opera- 
tor that the agent is trying to pursue, such as 
an intercept, the operators used to achieve it are 
grouped in terms of problem spaces. They are 
called problem spaces because their constituent 
operators determine the space of problems that 
can be solved. Operators can be shared among 
more than one problem space. For example set- 
ting the waypoint computer is used in flying 
routes, as well as flying BARCAPs. Other, so- 
called, floating operators, are available in every 
active problem space. Floating operators such as 
operators that detect changes in a bogey's activ- 
ity, are very sensitive to changes to the environ- 
ment and usually need to be selected soon after 
they become relevant. More generally, the hierar- 
chical and floating operators can be seen as at op- 
posite ends of two dimensions: sensitivity to the 
agent's current goals, and sensitivity to the cur- 
rent situation. All operators must be sensitive to 
both concerns, but floating operators emphasize 
reacting to the current situation (within the con- 
text of the current goals), while hierarchical oper- 
ators emphasize responding to the current goals 
(within the context of the current situation). 

Within a subgoal, local situational information 
is held in the subgoal's state. Each subgoal has 
access to all of the state information in its super- 
goals, and the state of the top goal contains all 
the data used to fly a mission, including all sensor 
data, the agent's interpretation of the current sit- 
uation, a description of the current mission, data 
on other agents, etc. 

The hierarchical operator structure provides 
the necessary framework for encoding knowledge 
and organizing the behavior of Air-IFOR agents; 
however, it alone is insufficient to provide flexibil- 
ity and reactivity. What is needed is the ability 
to dynamically propose, select, and apply the op- 
erators that are appropriate for the current situa- 
tion. This is done in Soar through its underlying 
rule-base system, which directly implements the 
selection, application, and termination of opera- 
tors described above. Thus, there are rules which 
test the current situation and propose operators, 
rules which compare proposed operators and sug- 
gest preferences between operators, rules which 
test that an operator has been selected and then 
performs some aspect of the operator, and rules 
that test that all aspect of an operator have been 

completed, and signal that the operator is fin- 
ished. The actual selection of operators is not 
done directly by individual rules, but by a deci- 
sion procedure, which selects an operator based 
on all relevant preferences. 

Most rule-based systems use a conflict- 
resolution scheme to select a single rule to fire 
on each cycle. However, rules from these systems 
map more directly onto Soar's operators, which 
are the locus of deliberate activity in Soar, and 
where selection is controlled by preferences and 
the decision procedure. Soar's rules are more like 
an associative memory, where the information in 
actions of rules is recalled whenever the condi- 
tions of the rules match. Thus to retrieve all infor- 
mation relevant to the current situation, the basic 
cycle is to fire all rules that match the current sit- 
uation, and continue firing until quiescence. Dur- 
ing this rule firing phase, rules to implement the 
current operator are firing, as well as rules propos- 
ing new operators. At quiescence, assuming the 
current operator is finished, a decision is made 
to select a new operator based on the available 
preferences, and the cycle begins again. If the 
current operator cannot be finished, possibly be- 
cause it requires problem solving in a subgoal, a 
subgoal will be created automatically, and then 
rules sensitive to the subgoal will fire to suggest 
appropriate operators. When a rule detects that 
the original operator is finally complete (or should 
be abandoned), it will fire and cause a new op- 
erator to be selected and the immediate subgoal 
(and any additional subgoals) will be automati- 
cally removed. Soar is integrated with ModSAF 
so that one decision is made for each agent during 
each clock tick of the simulation, and thus 2 to 15 
decisions are made in each Air-IFOR agent each 
second. 

4.2    Infrastructure 

In mamtaining a rule-based system, the rules 
must be organized so that it is easy to find rules, 
not only by their name, but also by their role in 
producing behavior. For the Soar/IFOR agents, 
we have mapped the hierarchical structure of the 
operators onto the hierarchical structure of the 
Unix file system. Thus, each goal (or subgoal) 
has its own directory, and within that directory 
there are files for each of the operators, plus a 
file for loading in those operator files. For cases 
where rules are not shared across agents, we have 
a dynamic load facility that loads only the subset 
of the code that is relevant to the current agent's 
vehicle and mission. 

Our lowest-level documentation of the problem 
space, operators, and rules is also organized in the 
same hierarchical file structure with direct links 
from the documentation to the code [Koss and 
Lehman, 1994]. A higher level of documentation, 



using the terminology and structure of our do- 
main experts, links into the problem space docu- 
mentation to currently support a limited form of 
validation. All of our documentation is in HTML 
and it can be accessed through viewers such as 
Mosaic and Netscape. 

To support the creation of the code and doc- 
umentation with our conventions, we have cre- 
ated the Soar Development Environment (SDE) 
[Hucka and Laird, 1995], which is an extension to 
Emacs. SDE has a template language that can 
be used to automatically generate all of the nec- 
essary directories, code, and documentation files 
when new operators are created. SDE also pro- 
vides many features to aid in debugging, such 
as automatic finding of files in which rules are 
stored, point and click commands for common 
functions, and general search facilities for the 
rules. 

4.3    Current Status and Lessons Learned 

The current Air-IFOR agents have a combined 
total of approximately 320 operators, with a total 
of 3,100 rules. Individual agents have between 
1,130 and 2,550 rules depending on their missions. 
These counts do not include our natural language 
or debriefing systems, which by themselves have 
substantial numbers of rules. 

One of the challenges in building the agents has 
been to maintain the computational efficiency of 
the system as we add new capabilities. The prob- 
lem is not that Soar slows down as the sheer num- 
ber of rules increase (research indicates that Air- 
IFOR agents may be able to grow to even a mil- 
lion rules without this being an issue [Doorenbos, 
1994]), but instead the problem is that it is easy 
to write rules that fire every time some input data 
changes (such as when the current position of the 
plane changes). As a result, we closely monitor 
rule firings in order to identify costly rules, and 
then attempt to rewrite them in order to decrease 
their cost. In a few cases, we have discovered 
that by removing a computation from Soar that 
is done in the cockpit for a pilot, such as with the 
waypoint computer and the CCIP, we have been 
able to drastically reduce the computational over- 
head in Soar. 

During agent development, we are able to run 
6-10 agents on a single 150MHz 4400 SGI Indy. 
However, one of the lessons we learned from 
STOW-E is that we are limited to around 4 
agents when there are large numbers of entities 
on the network. This is because of overhead in 
both ModSAF and the Soar agents that results 
from the processing of large numbers of entities, 
lit response, we expect to put more emphasis 
on focusing attention on only the most impor- 
tant entities at all levels of processing, as well 
as to continue research on efficient matching of 

rule-based systems [Acharya and Tambe, 1993; 
Kim and Rosenbloom, 1993]. 

5    Agent Capabilities 

Although Soar provides the basic architecture 
for building Air-IFOR agents, our agents are more 
than a large collection of rules that directly en- 
code doctrine and tactics. They must also have 
a many cognitive capabilities, some of which are 
directly related to military flying such as follow- 
ing a flight plan, situational awareness, planning 
attacks, employing weapons, and managing fuel, 
while others are more general cognitive capabil- 
ities, such as communicating with other agents, 
modeling the behavior of other agents, being able 
to explain the agent's behavior, and using general 
problem solving strategies. 

To date, we have discovered that although 
these general cognitive capabilities are impor- 
tant, we have been able to build viable agents 
by concentrating on those capabilities directly re- 
lated to performing our agents' missions. Thus, 
we have developed and incorporated capabilities 
for following flight plans, planning attacks, em- 
ploying weapons, situational awareness, manag- 
ing fuel, and so on. All of these are the building 
blocks for various missions. There are also many 
capabilities dealing with coordinating behavior 
among multiple agents, which are discussed in 
the section on multiagent interactions. These ca- 
pabilities are all implemented as operators that 
have complex subgoals. For example, following 
a flight plan involves many operators including 
flying routes (of which there are different types 
depending on the aircraft), performing various ac- 
tivities at waypoints (such as communicating with 
control agents or determining if a plane should de- 
lay at the point so that it arrives on target at the 
appropriate time), selecting the next route, and 
processing any changes the agent might receive 
to its mission. We expect these capabilities to be 
reused on future missions, possibly with modifi- 
cation as new variants are required. 

We expect that the more general cognitive ca- 
pabilities will become necessary as we try to cre- 
ate agents which are more autonomous, and thus 
able to handle novel situations on their own. To 
that end, we are pursuing research in the follow- 
ing areas: 

1. Natural language processing: Even with the 
advent of the Command and Control Simu- 
lation Interface Language (CCSIL) [Salisbury, 
1995], we will someday want Air-IFOR agents 
to directly interact with humans. Air-IFOR 
agents will need to understand and generate 
natural language, with one of the challenges 
being to integrate the processing of language 



with all of the other agents' tasks [Lehman et 
al., 1995]. 

2. Behavior explanation: As the complexity of 
Air-IFOR agents grow, it is necessary for each 
of them to be able to explain its own behav- 
ior and internal reasoning. What action did it 
take, why did it take that action, why did it 
interpret the situation in the way it did, and 
what were other options? We have been ac- 
tively pursuing these issues in the Debrief sys- 
tem, which is a set of Soar rules that when 
included in an agent before a run, allows the 
agent to be debriefed after flying a mission 
[Johnson, 1994]. 

3. Agent modeling: In order to interpret the ac- 
tions of other agents, Air-IFOR agents must 
have some understanding of what the other 
agents are thinking. This is currently done 
in very specialized and context specific ways 
in Air-IFOR agents. However, as we start to 
explore complex behavior, it will be necessary 
for Air-IFOR agents to create general internal 
models of what other agents are thinking about 
the current situation. For example, deceptive 
maneuvers involve generating behaviors with 
the goal of leading an opponent to incorrectly 
guess what your intent and action really is. We 
can currently encode "deceptive" maneuvers in 
Air-IFOR agents; however, for the agent itself 
to derive an appropriate deceptive maneuver 
in novel situations requires the ability to inter- 
nally model some of the thought processes of 
other agents, a problem we are actively pursu- 
ing [Tambe and Rosenbloom, 1995]. 

4. General Problem Solving and Planning: Our 
current agents have all the necessary control 
knowledge for making the decisions we ex- 
pect them to encounter. However acquiring 
this knowledge is difficult and time-consuming, 
and this knowledge alone does not always 
lead to robust performance in novel situations. 
Over the last year, we have done research on 
more general problem solving and planning 
approaches that can use more "fundamental" 
knowledge of the domain and thus increase 
the ability of Air-IFOR agents to respond to 
novel situations. Using experimental versions 
of TacAir-Soar, we have demonstrated the fea- 
sibility of integrating both look-ahead plan- 
ning [van Lent, 1995] and means-ends analysis 
[Wray, 1995] into Air-IFOR agents. 

In addition to the more general capabilities 
listed above, Air-IFOR agent must have knowl- 
edge that includes the doctrine and tactics appro- 
priate to the missions they are to perform. Cur- 
rently, Air-IFOR agents fly the following fixed- 
wing missions: BARCAP, Close Air Support, 
Strategic Attack, and MiGSweep.    For rotary 

wing, Air-IFOR agents can fly a basic anti-armor 
mission [Tambe et al., 1995b]. In addition, we 
have developed the following agents that act as 
controllers during missions [Nielsen, 1995]. 

• Air Intercept Controller (AIC) and Ground 
Controlled Intercept (CGI) which give infor- 
mation and commands about enemy planes. 
The AIC is situated in a plane with a large 
radar, such as an E2C. 

• Forward Air Controller (FAC) which provides 
final directions for close-air support missions. 

• Direct Air Support Center (DASC) assigns air- 
craft to missions, can change the mission, and 
hands off control to the FAC. 

• Fire Support Coordination Center (FSCC) de- 
termines the type of support to utilize (dose 
air support, artillery, or naval gunfire) and if 
close air support is determined it generates a 
tactical air request form then sends the request 
to the DASC. 

• Tactical Air Command Center (TACC) which 
provides air traffic control, intermediate rout- 
ing, and deconfliction. 

• Tactical Air Direction (TAD) controller directs 
specific air operations within the area of oper- 
ations, prior to the establishment of a DASC. 

We have operational versions of all of these 
agents, although many are limited to producing 
behavior that is only relevant to close air support 
and air-to-air missions. 

6    Multiagent Interactions 

Although the individual agents are by them- 
selves important, it is the coordination of agents 
that leads to effective military forces. Our ap- 
proach is to model the methods and- practices 
of military organizations. Air-IFOR agents co- 
ordinate their activities through a combination 
of common background knowledge (their knowl- 
edge of military methods, procedures, doctrine 
and tactics), common mission statements, and 
explicit communication (non-verbal and verbal) 
[Laird et al., 1995]. Because Air-IFOR agents 
know what they are supposed to do and when 
(because of their background knowledge and mis- 
sion statements), the need for explicit commu- 
nication is greatly reduced. Also, in contrast to 
SAF agents, Air-IFOR agents are "smart" enough 
to deal with the details of executing all aspects 
of the missions they have been assigned and do 
not require constant monitoring by a human or 
command agent. When explicit verbal commu- 
nication is used, we attempt to model both the 
content and form used by real pilots. Thus, 
Air-IFOR agents send simulated radio messages 
whose content closely mirrors the English words 



and phrases used by real pilots. The generation 
and interpretation of these messages is currently 
done by a fixed set of templates and not a general- 
purpose natural language facility (although one is 
under development [Lehman et al., 1995J). Air- 
IFOR agents currently can generate and interpret 
approximately 100 different types of messages. 

When flying as a unit, most of the coordination 
occurs by the wingman visually observing and re- 
sponding to the behavior of the lead of the unit. 
The wingman constantly adjusts its position to 
stay in the appropriate formation. The wingman 
also keeps track of the progress of the unit in its 
mission, observing the achievement of waypoints. 
Depending on the mission details, the wingman 
may change formation, break formation to fly an 
independent ground attack, rejoin the formation 
following an attack, or even take over as the lead. 

Currently, TacAir-Soar agents (Air-IFOR 
agents for tactical fixed wing aircraft) are able 
to fly as either sections (two planes) or divisions 
(four planes). They can fly a variety of forma- 
tions and they can dynamically break into smaller 
units, such as a division splitting into two sec- 
tions, and then later reform as a single unit. 
Within a section, the lead and wingman can coor- 
dinate their radars (covering different parts of the 
sky and communicating enemy contacts) as well 
as coordinating their weapons employment dur- 
ing air-to-air engagments. During air-to-ground 
attacks, a section can use a variety of coordinated 
tactics, which are planned by the lead at the be- 
ginning of the mission. Our work on coordina- 
tion with rotary wing units is also under devel- 
opment where currently the helicopters can fly in 
pairs, with the expected progression to platoons 
and then companies during the next year. 

A unit of TacAir-Soar agents, such as a sec- 
tion or division, will also coordinate its behavior 
with available controllers (AIC, CGI, FAC, TAD, 
TACC, FSCC, DASC) [Nielsen, 1995]. The con- 
trollers can give the unit flight information (such 
as the altitude to fly at, or the name of the next 
controller), permission to continue the mission 
(permission to enter an area, or permission to at- 
tack a target), information on other planes, or 
changes to missions. In the case of changing a 
mission, a controller can dynamically change al- 
most any aspect of a ground attack mission in- 
cluding the route, the time on target, and the 
final target. When a mission change is received, 
the members of the unit change their missions, 
sometimes replanning the final attack for air-to- 
ground missions. 

Our goal is to continue to build up the co- 
ordination of Air-IFOR agents into integrated 
missions. We are currently close to complet- 
ing close-air support which involves a variety of 
controllers plus planes doing individual missions. 

However, missions such as offensive strike and 
integrated interdiction can involve a variety of 
different planes flying many different individual 
missions (strategic attack, RECCE, MiGSweep, 
SEAD, etc.) that have to be closely orchestrated 
to pull off the complete mission. We plan on 
working on these missions and the required co- 
ordination over the next year. 

Our approach to date has been to support the 
coordination of activities within the set of agents 
under our direct control. We have been able to 
develop our own templates independent of other 
groups. However, in the future some Air-IFOR 
agents will need to communicate with other com- 
mand forces, and thus, we will soon be using 
CCSIL protocols for communication between our 
agents and their controllers. 

7    STOW-E 

During November 4r-7, 1994, a large scale op- 
erational military exercise called STOW-E (Sim- 
ulated Theater Of War - Europe) was held across 
18 installations in United States and Europe. At 
its peak, over 1,800 entities were simulated on 
the Defense Simulation Internet (DSI). Although 
the vast majority of the entities were involved in 
ground actions, there were also a significant num- 
ber of air missions being flown using humans in 
simulators, ModSAF agents, Soar/IFOR agents, 
and in a few cases, real planes with instrumenta- 
tion that allowed them to be sensed within the 
DIS environment (although these planes could 
not sense the DIS entities). For the Soar/IFOR 
group, this was the first chance to participate 
in a realistic, large scale simulation environment 
where we did not have complete control over the 
scenarios. 

Over the four day period, the Soar/IFOR 
agents were scheduled to participate in 10 events. 
For each event we had specific missions assigned 
to Air-IFOR agents that had been given to us 
weeks in advance. These missions included defen- 
sive air missions (BARCAPs), offensive air mis- 
sions to disrupt BARCAPs, air to ground mis- 
sions, and air to surface missions. 

We successfully fielded agents for every event 
in which we were scheduled (10 events, approxi- 
mately 32 agents) and participated in many un- 
scheduled events (5-7 events, approximately 16 
agents). TacAir-Soar performed air-to-air mis- 
sions against ModSAF and humans (in simula- 
tors). TacAir-Soar attempted to engage planes 
from other sites, but because of problems with 
the network, the other agents did not see TacAir- 
Soar. We also participated in air-to-ground 
(bombing bridges, etc.) and air-to-surface (fir- 
ing missiles at ships) attacks in which we engaged 
ground and surface targets from other sites. 



We did have a limited number of software fail- 
ures with the most significant being our inability 
to fly over the terrain database where the ground 
battle was raging when it was populated with 
hundreds of tanks. This was caused by a software 
bug in our C code for processing ground targets 
using radar. 

One of our goals was to provide viable oppo- 
nents for simulated and human pilots; however it 
was difficult to evaluate the "skill" of our TacAir- 
Soar because of some problems with the under- 
lying simulation models. For example, during 
the first day, we were frustrated with the per- 
formance of TacAir-Soar in engagements. They 
were easily shot down by ModSAF F/A-18's. We 
later learned that in order to populate the simula- 
tion with different types of planes, the F/A-18's 
were created by copying F-14's. The F/A-18's 
were therefore carrying Phoenix missiles which 
are much longer range than any missile carried 
by an F/A-18. TacAir-Soar, basing its tactical 
behavior on the known properties of F/A-18's, 
was caught by surprise (as it should have been). 

In engagements with humans, our planes would 
often get into, good tactical positions, only to see 
our missiles miss when they were shot. (TacAir- 
Soar did have some kills against humans in simu- 
lators, but in general, TacAir-Soar got "toasted".) 
We believe that the missile missed because of 
flaws in the ModSAF missile models. Thus, al- 
though TacAir-Soar got shot down, it was in gen- 
eral using appropriate tactical maneuvers. In- 
dependent of the specific outcome, this exercise 
proved the value of taking systems out of the lab- 
oratory and testing them in more realistic situa- 
tions. 

Possibly the best example of our capabilities 
was in the execution of an unscheduled event for 
the second day. In this mission, a section of F/A- 
18's were to perform a ground attack against a set 
of islands in the simulated battle area. Our planes 
were used in place of a virtual (manned) ground 
attack because of the failure of that simulator. 
Enroute to the target, the planes were unex- 
pectedly intercepted by ModSAF MiG-29's. The 
F/A-18's engaged the MiG-29's to defend them- 
selves and got off one or two shots (but no kills). 
The MiG-29's disappeared from the network, and 
our planes automatically returned to their air- 
to-ground attack mission. Further enroute, they 
were unexpectedly fired on from a surface-to-air 
site, killing the wingman (not only did the planes 
not expect it, we didn't realize there would be any 
surface-to-air systems in STOW-E — clearly an 
unscripted interaction). The lead continued on, 
successfully dropping bombs on the designated 
target and then egressing back to base. 

Although we considered our participation in 
this exercise a success, it did demonstrated some 

weaknesses that we must address in the future. 

• Number of vehicles: We discovered that for 
an exercise with a large number of vehicles, 
we were not able to run the number of vehi- 
cles/workstation that we had expected. Part 
of this is the overhead in the network process- 
ing code of ModSAF, but it also was a problem 
for our AIC/E2C agent which could see a large 
number of agents at once because of its radar. 
This has led us to use more deliberate focus- 
ing of attention in Air-IFOR agents so that 
they do not attempt to process the complete 
situation at once, but instead concentrate on 
subsets of the situation, preferably those that 
are relevant to the current tactical situation. 

• Mission set up: Before STOW-E, we had not 
developed any tools to help specify and man- 
age the missions of Air-IFOR agents. During 
STOW-E, it was time-consuming and error- 
prone for us to create or modify the missions. 
As a result, we are currently developing graph- 
ical interface tools that will make it possible 
to enter and modify missions directly, without 
editing intermediate data structures. Our goal 
is that our interface should give the user the 
same look and feel as the documents and tools 
used by pilots in their normal briefings. The 
integration of Tel and Soar is making this much 
easier because of its ability to manage windows 
and build formated graphical and textual in- 
terfaces. In the future we must also have the 
ability to accept missions from other software 
systems using CCSIL; however the details of 
the protocols have yet to be defined. 

• Runtime control: Once Air-IFOR agents re- 
ceived their missions, they would fly the mis- 
sions without any human management. Thus, 
we became observers and ran our exercises 
"hands-off". In contrast, the ModSAF planes 
required constant attention, with a human con- 
trolling their behavior on and off during the 
exercise. Although we wish to continue our 
approach, we also came to recognize that we 
needed the ability to dynamically change some 
aspects of the missions of Air-IFOR agents 
during the exercise, such as changing the way- 
point at which a section of planes is stationed. 
These are relatively minor changes to TacAir- 
Soar. 

This exercise has the additional significance of 
demonstrating that "hard core" AI technology 
can be successfully used in an operational exer- 
cise (although in STOW-E this was in a limited 
role). We believe that this is one of the first (if 
not the first) time that an AI system has been 
used in this way. 

8    Summary and Conclusions 



In the beginning of the Soar/IFOR project, 
there were many questions as to whether it was 
practical to develop intelligent forces for synthetic 
environments. Although there is still much more 
work to do, three years of research and devel- 
opment have brought us to the point where we 
can state with some degree of certainly that in- 
telligent forces are practical and will play a sig- 
nificant role in STOW-97. It is difiicult to iso- 
late specific parts of our methodology or under- 
lying technology as responsible for this success, 
although clearly we believe that the underlying 
Soar architecture is responsible to a significant 
degree. Its ability to combine fine-grain reactive 
reasoning of rules, with more deliberate and hier- 
archical decision making using operators within 
problem spaces, appears to be well matched to 
the demands of the interactive simulation and the 
cognitive processes of the humans we are attempt- 
ing to model. 

One surprise has been our ability to build com- 
plex and relatively general systems while not us- 
ing many of the more advanced techniques such as 
means-ends analysis, planning, learning, complex 
agent modeling, or natural language. However, 
we still believe that these are critical capabilities 
for building robust, general agents, and we are 
continuing to pursue research in these areas. 

In the immediate future, we will continue to 
expand the breadth of missions and capabilities 
of Air-IFOR agents. For fixed wing, a primary 
goal is to develop the appropriate agents to fly 
integrated interdiction and strategic attack mis- 
sions. The coordination of many different types 
of aircraft, with different missions promises to be 
challenging. In rotary wing, our goal is to field 
a complete company of attack helicopters. Our 
plan is for these developments to lead up to a 
successful participation of Soar/IFOR agents in 
STOW-97. 
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1    Introduction 

The Soar/IFOR project is developing human-like, 
intelligent agents that can interact with humans, and 
with each other, in battlefield simulations [10]. Our 
agents play a variety of roles such as fighter pilots, he- 
licopter pilots, and airspace controllers. The fighter 
pilot agents in particular have been successfully de- 
ployed in large-scale simulation exercises, such as the 
Synthetic Theater of War (STOW) exercise in Novem- 
ber, 1994, which modeled a four day battle scenario 
involving approximately 2000 military vehicles. Au- 
tonomous agents such as Soar/IFOR agents are ex- 
pected to continue to play a major role in battlefield 
simulations, which in turn are expected to provide an 
essential tool for military planning and training in the 
future. 

Soar/IFOR agents are implemented in Soar, a prob- 
lem solving architecture that integrates a number of 
human cognitive functions, including problem solving, 
perception, and learning [4]. Learning occurs through 
the application of a general mechanism called chunking 
that summarizes the results of processing on subgoals, 
in the form of rules that can apply to similar sub- 
goals in the future. This chunking process is a form of 
explanation-based learning EBL [7, 6]. Chunking can 
lead to speedup in learner performance, and is instru- 
mental to the learning of new concepts. Some Soar 
systems have managed to learn thousands, and even 
hundreds of thousands, of chunks[2]. 

From the previous experience with learning in Soar, 
it was taken as a given that the Soar/IFOR agents 

could be made capable of applying chunking in service 
of their performance requirements. The first research 
question that we focus on in this paper is then the 
following: What kinds of knowledge can Soar/IFOR 
agents learn in the combat simulation environment? 
In our investigations so far, we have found a number 
of learning opportunities in our systems, which yield 
several types of learned rules. For example, some rules 
speed up the agents' decision making, while other rules 
reorganize the agent's tactical knowledge for the pur- 
pose of on-line explanation generation. 

Yet, it is also important to ask a second question: 
Can machine learning make a significant difference in 
Soar/IFOR agent performance? The main issue here 
is that battlefield simulations are a real-world applica- 
tion of AI technology. The threshold which machine 
learning must surpass in order to be useful in this en- 
vironment is therefore quite high. It is not sufficient to 
show that machine learning is applicable "in principle" 
via small-scale demonstrations; we must also demon- 
strate that learning provides significant benefits that 
outweigh any hidden costs. 

Thus, the overall objective of this work is to de- 
termine how machine learning can provide practical 
benefits to real-world applications of artificial intel- 
ligence. Our results so far have identified instances 
where machine learning succeeds in meeting these var- 
ious requirements, and therefore can be an important 
resource in agent development. We have conducted 
extensive learning experiments in the laboratory, and 
have conducted demonstrations employing agents that 
learn; to date, however, learning has not yet been em- 
ployed in large-scale exercises. The role of machine 
learning in Soar/IFOR is expected to broaden as prac- 
tical impediments to learning are resolved, and the 
capabilities that agents are expected to exhibit are 
broadened. 
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2    The Problem Domain 

Soar/IFOR agents are designed to work within dis- 
tributed interactive simulations (DIS) of military exer- 
cises. But unlike conventional "semi-automated" enti- 
ties in distributed simulations, Soar/IFOR agents are 
fully capable of autonomous decision making without 
outside human intervention. They are intended to be 
realistic models of military agent behavior, so much 
so that to an outside observer their behavior is indis- 
tinguishable from that of people. They must perform 
most if not all of the functions that human personnel 
would be called upon to perform, e.g., to issue and/or 
understand commands, to coordinate their activities 
with friendly forces, and to interpret and respond to 
the actions of enemy units. Needless to say, achieving 
these goals successfully is a significant achievement for 
artificial intelligence. 

Soar/IFOR agents interact with distributed simu- 
lations via the ModSAF simulation package [1]. Each 
agent is assigned to a ModSAF simulation of a vehicle, 
e.g., an aircraft. Soar/IFOR receives inputs from the 
vehicle, via an abstract interface [8], information sim- 
ilar to what a human controlling the same vehicle in 
the real world would receive, such as position of the ve- 
hicle, presence of enemy vehicles in the area, etc. The 
Soar/IFOR agent interprets the situation based upon 
the information received, decides on actions to take, 
and communicates these to ModSAF as commands for 
the vehicle to execute. Some of the details of psy- 
chomotor control and resource contention are omitted 
from the model, e.g., a Soar/IFOR pilot controls its 
aircraft by specifying desired altitudes and headings 
instead of by simulating stick movements. However, 
these abstractions do not simplify the agents' decision 
making task. 

Soar/IFOR has been tested in simulated exercises 
incorporating manned simulation devices such as flight 
simulators, semi-automated forces, as well as auto- 
mated forces. Soar/IFOR agents are assigned missions 
prior to the engagement, and are otherwise left to carry 
out their missions themselves. Agents are evaluated 
according to how appropriately they perform in each 
individual engagement. 

Although such exercises are useful for demonstrat- 
ing agent capabilities, they do not in themselves en- 
sure that Soar/IFOR agents meet the needs of po- 
tential users of distributed simulations. For example, 
in order for users to be certain that agent decision 
making is realistic, they need to understand the ra- 
tionales for the agent's decisions. This has led to the 
development of an automated explanation capability, 

called Debrief, that enables users to engage agents in 
a question-answer dialog, in a manner analogous to an 
after-action review [3]. 

3    Learning in Soar Agents 

The air-combat simulation environment—by virtue 
of its complex, real-world characteristics—presents 
Soar/IFOR agents with a number of challenging func- 
tional and performance requirements. There are also 
many ways in which machine learning can help the 
agents meet these requirements. Chunking in IFOR 
has been found so far to enable the following func- 
tional capabilities and performance improvements. 

• Decision making speeds up over time. 

• A memory of past episodes is maintained. 

• Problem solving knowledge is reorganized in order 
to support explanation and efficient execution. 

• Interpretation of situations and events improves 
in quality with experience. 

A Soar/IFOR agent engages in some of this learn- 
ing on-line, i.e., while it is engaged in simulated com- 
bat. Prime candidates for such on-line learning include 
chunking for speedup, episodic memory and knowl- 
edge compilation. However, not all learning can or 
should occur on line. In particular, some of the learn- 
ing requires that a Soar/IFOR agent consider the con- 
sequences of its decisions, explore alternative decisions, 
and learn from the results. Because of the real-time 
pressures of air-to-air combat, a Soar/IFOR agent may 
not have the free time to engage in such deliberation. 
Time pressures are certainly not continuous: there can 
be momentary lulls in activity that could be used for 
deliberation and learning, but as yet are not. Instead, 
Soar/IFOR agents rely upon off-line analysis for such 
learning. It waits for the combat situation to termi- 
nate, so it can analyze past situations without inter- 
ruption. This enables the agents to explain their rea- 
soning during after-action review, for example. 

Learned chunks are applied to future decisions in 
the following ways. A chunk learned during an engage- 
ment may apply later on within the same engagement. 
It may apply during after-action review of the engage- 
ment. Finally, chunks created during a mission or dur- 
ing after-action review are saved so that they can be 
employed by agents in future missions and review ses- 
sions, enabling the agents to learn from accumulated 
experience. 
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3.1    Speeding Up Decisions 

In much machine learning research, such as [5], 
speedup is measured by comparing problem solving 
time after learning to problem solving time without 
learning. Such a measure is inappropriate for learn- 
ing in Soar/IFOR, because chunking does not yield an 
overall speedup, i.e., it does not reduce the overall du- 
ration of the engagement. In other domains such lack 
of speedup might be attributable to the high cost of 
matching and retrieving the learned chunks[ll]. How- 
ever, for Soar/IFOR agents, the cost of matching and 
retrieving learned rules is not much of an overhead. 
Rather a combination of the following two effects are 
at work. First, combat simulation involves performing 
(simulated) physical actions and responding to exter- 
nal events. Learning cannot affect the duration of such 
actions and events; at best it can reduce the time re- 
quired to decide on an action or interpret an event. 
Second, cognitive activity is concentrated in isolated 
episodes, separated by periods of relative inactivity. 
Speedups in deliberation contribute very little to re- 
ductions in the overall duration of a scenario. For in- 
stance, suppose a Soar/IFOR agent decides to launch 
a missile at an opponent. To that end, it must decide 
which type of missile to employ, and how best to ap- 
proach the opponent's aircraft. These decisions take 
up at most a few seconds. The agent then has to wait, 
sometimes for up to a minute or more while the op- 
ponent gets into its missile firing range. Decision time 
thus has little or no effect on overall time to intercept 
the opponent. 

Although learning has little effect on the overall du- 
ration of engagements, it can make a substantial dif- 
ference in time-critical situations. In such situations, 
small delays in an agent's action can jeopardize its sur- 
vival, or prevent the agent from exploiting momentary 
advantages over an opponent. For instance, when a 
Soar/IFOR agent fires a missile at its opponent, the 
opponent may engage in a missile evasion tactic that 
can cause it to break radar contact (disappear from the 
Soar/IFOR agent's radar). The opponent may then 
turn quickly to fire a missile at the Soar/IFOR agent. 
This is an extremely time-critical situation. When 
the opponent turns back after its missile evasion ma- 
neuver, the Soar/IFOR agent obtains a new contact 
(blip) on its radar. This blip could be the opponent, 
or perhaps a friendly aircraft who has just arrived in 
radar range. The Soar/IFOR agent must quickly de- 
termine the contact's identity, and then launch a sec- 
ond missile before the opponent fires her missile. If 
the Soar/IFOR agent is delayed in re-establishing the 

opponent's identity, it may get shot down. Chunking 
can enable Soar/IFOR agents to arrive at important 
decisions more rapidly the next time a similar situa- 
tion is encountered. The end result is that the agents 
can survive longer, and fight better. 

A possible way of measuring speedup might be to 
measure an agent's reaction time, i.e., the from an ex- 
ternal event until the agent's response to that event. 
This presupposes, however, that the stimuli are con- 
trolled so that there is a clear relationship between 
stimulus and response. However, battlefield engage- 
ments are not like controlled laboratory experiments: 
instead, agents are constantly exposed to a variety of 
stimuli, and perform a variety of tasks, often at the 
same time. Reducing the amount of time required to 
interpret one stimulus often has the indirect effect of 
enabling the agent to attend to other stimuli that were 
previously overlooked, such as a second opponent that 
has just arrived in radar range. This clearly can have 
an impact on overall agent performance, but in a way 
that is difficult to quantify. 

3.2    Maintaining an Episodic Memory 

It is useful for Soar/IFOR agents to have an episodic 
memory, so that they can recall episodes from previous 
engagements during after-action review or subsequent 
missions. Episodic memory can be regarded as an as- 
pect of learning, insofar as the problem solver's rea- 
soning after memory formation is different from that 
before memory formation. It is instrumental to other 
types of learning: for example, if an agent can recog- 
nize that the current situation is similar to previous 
situations, it can then apply its previous experience to 
the new situation. 

We have found that chunking can be readily em- 
ployed to address part of the episodic memory prob- 
lem, namely to learn to recall the circumstances in 
which a given event occurred. That is, when presented 
with a description of an event, chunks fire which recre- 
ate a description of the world state that prevailed at 
that time. Other aspects of episodic memory, such as 
recalling what events occurred as part of a given mis- 
sion, are not as yet handled via chunking; the agent 
instead simply records the events that occur in a con- 
ventional list data structure. 

The episodic memory mechanism relies on two sets 
of chunks. The first set consists of recognition chunks, 
which are common in a range of Soar systems. Recog- 
nition chunks fire in response to some description that 
serves as a memory probe, indicating that an instance 
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matching the probe has been seen before. In the 
Soar/IFOR case, the memory probe consists of a de- 
scription of an event, together with a possible state 
change. If the state change occurred at the time 
the event was observed, the recognition chunk will 
fire. These recognition chunks are created in a special 
episodic-memory subgoal, which is processed whenever 
the agent notices a significant state change. The sec- 
ond set of chunks are recall chunks, which recall the 
complete state in which an event occurred, when pre- 
sented with an event description as a memory probe. 
The first time Soar/IFOR attempts to recall the state 
associated with an event, it first tries to find an earlier 
event for which it can recall a state. It then tries to 
recall which state changes occurred between the earlier 
state and the state of interest. The previously created 
recognition chunks identify the relevant state changes. 
Once the recall process is complete, a recall chunk is 
created, so that the next time the event is used as a 
memory probe the state is immediately recalled. 

Episodic memory illustrates how chunking can serve 
as an underlying mechanism for a variety of types of 
learning besides simple speedup. Such learning may 
require problem spaces that are specially designed to 
generate particular types of chunks such as recognition 
chunks or recall chunks. 

3.3    Reorganizing Knowledge 

Chunking also enables Soar/IFOR agents to reor- 
ganize their knowledge. In knowledge based systems 
generally, the form in which knowledge is encoded de- 
pends upon how the knowledge engineer intends the 
knowledge to be used. Learning enables knowledge 
encoded for one purpose, i.e., controlling the agent's 
behavior, to be employed for other purposes, e.g., ex- 
plaining the agent's decisions. 

Soar/IFOR's interactive explanation capability, 
called Debrief, makes extensive use of chunking for 
knowledge reorganization [3]. The agents can explain 
the rationales for decisions made during an engage- 
ment, by relating chosen decisions to the critical fac- 
tors in the situation that led to those decisions. The 
knowledge needed to generate such explanations, i.e., 
associations between decisions and sets of situational 
factors, is different from the knowledge used to gener- 
ate the decisions in the first place. For one thing, the 
process of generating the decision may involve inter- 
nal reasoning mechanisms that are of little interest to 
someone who is not an agent developer. Recognition 
chunks are built which identify the key factors leading 
to a decision in a given situation. This is accomplished 

by reconsidering the decisions after the engagement is 
over, and proposing hypothetical changes to the situa- 
tion in which the decision was made. The set of state 
features that prove significant, because altering them 
alters the outcome of the decision, is saved in a chunk. 
If the agent is asked to explain a similar decision in a 
similar situation, the recognition chunk will fire iden- 
tifying those features of the situation that should be 
included in the explanation. 

Knowledge reorganization also allows knowledge or- 
ganized for ease of knowledge engineering to be ren- 
dered in a form suitable for efficient execution. The 
Soar/IFOR project is developing a variety of types of 
agents, among which only some knowledge is shared. 
Rules therefore tend to be factored so as to separate 
the shared knowledge from the unshared knowledge. 
Chunking is used in some cases to combine this knowl- 
edge into larger agent-specific rules, thus reducing the 
number of rules that must execute. This happens be- 
cause chunking summarizes the results of all rules that 
are executed in a subgoal, in the form of a single rule 
that represents their combined effect. Agent develop- 
ers are thus free to encode the knowledge in a factored 
form, with the expectation that the factored rules will 
be combined when they are executed by the agent. 

3.4    Improving Situation Interpretations 

Accurate interpretations of the rapidly evolving 
battlefield situation is key to a Soar/IFOR agent's suc- 
cessful task performance. One important component 
of such an interpretation is accurate tracking of an 
opponent's ongoing actions, to infer her higher level 
goals, plans or behaviors. For instance, a Soar/IFOR 
agent cannot actually observe a missile, but needs to 
infer a missile firing based on the opponent's maneu- 
vers, as shown in Figure 1. Here, the Soar/IFOR agent 
is piloting the dark-shaded aircraft and its opponent 
the light-shaded one. In Figure 1-a the two aircraft 
are on collision course—if they fly straight they will 
collide at the point shown by x. After reaching her 
missile firing range, the opponent turns her aircraft to 
point at the Soar/IFOR agent's aircraft (see Figure 
1-b). In this situation, the opponent fires a missile. 
She then turns 45-degrees—an Fpole turn—to provide 
radar guidance to the missile, while slowing the closure 
between the two aircraft. The Soar/IFOR agent can- 
not observe this missile, but based on the opponent's 
turn to point at its aircraft and the subsequent Fpole 
turn, it needs to infer that the opponent has fired a 
missile. 

unfortunately for the Soar/IFOR agents, the hu- 
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Figure 1: Tracking an opponent's normal missile firing 
maneuvers. An arc on an aircraft's nose indicates its 
turn direction. The missile is indicated by -. 

man pilots in the STOW-E exercise (see Section 1) 
were briefed as to what cues Soar/IFOR looks for 
when interpreting opponent actions, and how they 
might be able to fool Soar/IFOR by avoiding these 
cues. They deliberately modified their missile fir- 
ing behavior to fire missiles while maintaining a 25- 
degree angle-off (i.e., pointing 25-degrees away from 
Soar/IFOR agents' aircraft). The Soar/IFOR agents 
failed to track the missile firing and got shot down. Of 
course, human pilots are bound to come up with novel 
variations on known maneuvers, and the Soar/IFOR 
agents cannot be expected to anticipate them. Yet, 
at the same time, agents cannot remain in a state 
of permanent vulnerability—for instance, getting shot 
down each time the variation of 25-degrees gets used— 
otherwise they would be unable to provide a challeng- 
ing and appropriate training environment for human 
pilots. 

The Soar/IFOR agents must adapt their opponent 
tracking to counter such adaptive behavior on the part 
of humans. To this end, we are developing the ca- 
pability to analyze the past combat episodes off-line, 
and learn from obvious errors. In the above case, the 
Soar/IFOR agent records in its episodic memory that 
it got shot down. Its episodic memory of the com- 
bat also reveals that it never detected the opponent's 
missile firing behavior. Simultaneously, however, the 
episodic memory will note that the agent did face a 
mysterious maneuver that it was unable to track (cor- 
responding to the missile firing with a 25-degree angle- 
off). Based on this episodic memory, the agent can 
learn that the human pilot can fire a missile from a 
25-degree angle-off. 

4    Practical Aspects of Using Chunking 

Given the Soar/IFOR agents' real-world environ- 
ment, the costs and benefits of chunking have to be 
evaluated from a practical perspective. The key ques- 
tion here is: Do the benefits of chunking outweigh its 

costs as it stands today? In this regard, the following 
factors need to be taken into account: 

1. The Soar/IFOR agents' current knowledge is al- 
ready encoded in a highly optimized form, so that 
they can rapidly respond to opponents' maneu- 
vers. It is difficult for chunking to improve upon 
such decisions, other than to reorganize the en- 
coded knowledge somewhat, as described above. 

2. The agents' current knowledge is the result of ex- 
tensive knowledge acquisition sessions. Some of 
the tactical knowledge gained from these sessions 
is highly sophisticated and a result of careful anal- 
ysis of the capabilities of the opposing forces. It 
is difficult for chunking techniques to reconstruct, 
much less improve on, this expertise. 

3. Chunks learned are sometimes highly specific— 
their conditions refer to the agent's current situ- 
ation in terms of the value of its altitude, speed, 
range from an opponent, etc. Such chunks do not 
transfer (apply) to other similar situations, thus 
reducing the effectiveness of chunking. 

4. The learning process itself can incur development 
overhead. Modifications to agent code can in- 
validate previously created chunks. Thus as the 
agents are modified, training sessions must be run 
repeatedly in order to produce an up-to-date set 
of chunks. 

The above practical issues in applying chunking, 
combined with our earlier observations regarding the 
lack of overall speedups, implies that on-line chunking 
has to be very carefully applied, if at all, in service of 
speedups. We find it expedient to turn chunking on 
when the agents are making certain types of decisions, 
and turn it off elsewhere. 

5    Long-Term Prospects 

As development of Soar/IFOR proceeds, new op- 
portunities continue to present themselves for making 
more extensive use of machine learning, and to em- 
ploy existing learning abilities in new ways. Episodic 
memory is a good example of the latter: once an agent 
has the ability to remember previous episodes, a va- 
riety of possibilities for learning from those episodes 
present themselves. As the added capabilities afforded 
by machine learning accumulate, and the costs asso- 
ciated with learning are mitigated, the benefits stem- 
ming from learning are expected to dominate the costs 
to a greater and greater extent. 
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There is reason to believe, in fact, that eventually 
further improvement in performance of Soar/IFOR 
agents will only be achievable by means of machine 
learning. As long as the decision making of Soar/IFOR 
agents is governed by fixed rules, wily human oppo- 
nents will learn ways of gaining advantages over the 
agents. This will be especially true if and when these 
agents are integrated into training devices that are 
used on a routine basis. If current work on enabling 
Soar/IFOR to learn from experience can be applied 
to a range of situations and scenarios, then human 
trainees will find simulations to be continually chal- 
lenging, and able to put their tactical skills fully to 
the test. 
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Abstract 

TACAIR-SOAR is a reactive system that rises 
recognition-driven problem solving to plan and 
generate behavior in the domain of tactical air 
combat simulation. Our current research efforts 
focus on integrating more deliberative planning 
and learning mechanisms into the system. This 
paper discusses characteristics of the domain that 
influence potential planning solutions, together 
with our approach for integrating reactive and 
deliberative planning. 

TACAIR-SOAR (Jones et al. 1993; Rosenbloom et al. 
1994) implements artificial, intelligent agents for use in 
tactical flight training simulators. The overall goal of 
the project is to create automatic agents that generate 
behavior as similar as possible to humans flying flight 
simulators. These agents will help provide relatively 
cheap and effective training for Navy pilots. 

In order to accomplish this task, we need not only to 
acquire and encode a large amount of complex knowl- 
edge, but also to address a number of core research is- 
sues within artificial intelligence. Not the least of these 
issues is the ability for the agent to plan its activities 
appropriately, and to acquire efficient and effective new 
behaviors as a consequence of planning. 

We are investigating the hypothesis that a variety of 
appropriate behaviors can arise from a system with a 
small, organized set of cognitive mechanisms as it inter- 
acts with a complex environment. Thus, the primary 
thrust of our research relies on integration in a num- 
ber of different forms.  Reactive behavior generation 

Thanks to Paul Rosenbloom, Lewis Johnson, Soowon 
Lee, Frank Koss, and the reviewers for their comments 
on earlier drafts of this paper. In addition, this research 
has benefited enormously from the combined efforts of the 
Soar-IFOR group. The research is supported by contract 
N00014-02-K-2015 from the Advanced Systems Technology 
Office of the Advanced Research Projects Agency and the 
Naval Research Laboratory. 

must be integrated with goal-directed reasoning and 
planning. These in turn must be integrated with other 
cognitive capabilities, such as situation interpretation, 
natural language understanding and generation, plan 
recognition, planning, etc. Rather than combining dis- 
tinct modules for execution, planning, and learning, 
we are attempting to integrate all of these capabilities 
within a single control scheme. Thus, planning be- 
comes simply another form of execution, which must 
interact with other knowledge in order to generate ap- 
propriate behavior. Learning occurs as a side effect of 
execution, manifesting itself in different ways depend- 
ing on the particular tasks being executed. Because of 
the incremental, dynamic, and complex nature of be- 
havior generation in the tactical air domain, learning 
must also be incremental, fast, and able to capture the 
complexities of goals and actions. 

The current version of TACAIR-SOAR combines re- 
active and goal-driven reasoning to create what we 
call recognition-driven problem solving (Tambe et al. 
1994). The system contains a large set of rules that 
fire as soon as their conditions are met, without search 
or conflict resolution. Some of these rules respond to 
immediate changes in sensory inputs, while others re- 
spond to higher-level interpretations of those changes 
and goals that the system posts for itself. As an ex- 
ample, TACAIR-SOAR may observe a series of readings 
about a contact on its radar, and conclude that the 
contact is an aggressive enemy aircraft. Thus, the sys- 
tem posts a goal of intercepting the aircraft, which in- 
volves maintaining a collision course. The actual head- 
ing of TACAIR-SOAR'S aircraft will change every time 
the collision course changes. This paradigm for be- 
havior generation is similar to reactive planning in the 
spirit of Firby's (1987) RAP planners. That is, the 
system does not perform any search to determine the 
best course of action, and it does not plan in terms of 
predicting future states of the environment.1  It also 

1TAcAm-SOAR agents do some prediction, but it is part 
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computes its behavior dynamically, rather than gener- 
ating a declarative plan that is later interpreted. Part 
of our current research effort is to equip TAC AIR-SOAR 

with a deliberative planning component that separates 
planning from normal execution by projecting future 
possible states and searching through them to decide 
on appropriate courses of action. 

Of the following three sections, the first provides a 
short motivation for the usefulness of deliberative plan- 
ning in the tactical air domain. The second lists a 
number of characteristics of the domain that have a 
significant impact on how planning must occur. These 
characteristics have been discussed in various earlier 
work on planning, but our work will address all of 
them together and attempt to provide a planning so- 
lution that naturally integrates into recognition-driven 
problem solving. The final section sketches potential 
solutions for deliberative planning. These solutions are 
suggested by a combination of the characteristics of the 
domain, our desire for a fully integrated system, and 
the problem-solving and learning paradigms provided 
by the Soar architecture. 

Advantages of Deliberative Planning 
As mentioned previously, the overall goal for the 
TACAIR-SOAR system is to generate human-like be- 
havior within the simulated environment. One hall- 
mark of human behavior is flexibility in the face of 
new situations. The current system has been equipped 
with a large knowledge base of tactics, vehicle dynam- 
ics, weapons characteristics, etc., and this allows the 
system to generate a wide variety of behaviors in re- 
sponse to different situations, missions, and goals. One 
approach to this type of domain has been to attempt to 
capture every possible situation that an agent may en- 
counter in a recognition rule (e.g., Bimson et al. 1994). 
However, even if such an approach is possible, it would 
require extensive work on the knowledge base every 
time the domain changes a bit (for example, if new 
aircraft or missiles are developed). 

In response to this difficulty, an agent must detect 
when it does not have suitable knowledge to react to a 
particular situation, and use its planning capabilities to 
generate appropriate actions based on more fundamen- 
tal knowledge. This requires the agent to integrate de- 
liberative planning with its current recognition-driven 
reasoning mechanisms. Naturally, we also expect the 
agent to learn from its planning episodes, generating 
new rules for future similar situations. 

TACAIR-SOAR will do much of its planning "in the 
air," where there are tight restrictions on time, thus 

of normal behavior generation, and not something that is 
learned about for decision making. 

limiting the learning opportunities. However, human 
pilots often learn by flying real or simulated scenar- 
ios, and then debriefing the scenarios on the ground. 
By going back over each step of the scenario, the pi- 
lot can identify successes and failures, consider alter- 
native courses of action, and take more time to eval- 
uate various possible outcomes. Automated agents 
have also been demonstrated to benefit from such self- 
explanations (VanLehn, Jones, & Chi 1992). In addi- 
tion, Johnson (1994a; 1994b) has presented a debrief- 
ing facility, in which TACAIR-SOAR agents can explain 
their actions after a scenario, and consider some hypo- 
thetical alternatives. The deliberative planning mech- 
anism should expand on this approach and allow the 
system to learn from the debriefing experience. In ad- 
dition, we intend the same planning mechanism to be 
used for planning both in the dynamic environment of 
an engagement and the calm, slow-paced environment 
of a debriefing session. Naturally, when the agent has 
more time to plan, the quality and quantity of effective 
learning should increase, but this will be due to the dy- 
namics of the planning situation, not because of any 
differences in the planning and learning mechanisms. 

Planning Issues for Tactical Flight 
This section focuses on the specific aspects of the tac- 
tical air domain that have a significant impact on how 
planning should be carried out. There are five par- 
ticular characteristics that set the domain apart from 
traditional domains used in planning research. 

Interaction of Domain Goals 

The current version of TACAIR-SOAR knows about al- 
most 100 different types of goals, and many of these 
interact with each other. For example, there are times 
when an agent wants simultaneously to fly toward a 
target, evade an incoming missile, and maintain radar 
contact with another aircraft. This presents the tradi- 
tional problem of planning for goal conjuncts (Chap- 
man 1987; Covrigaru 1992). However, we must trade 
off the intensive search that can be involved in this 
type of planning with the dynamic and uncertain na- 
ture of the task (discussed below). Other researchers 
(e.g., Cohen et al. 1989; Veloso 1989) have suggested 
methods for planning about conjunctive goals in real 
time, and we hope to borrow from these approaches in 
our own efforts. 

Two primary elements of conjunctive goal planning 
are detecting a goal interaction and then finding a way 
to deal with the interaction. Within TACAIR-SOAR, 

interactions will generally be detected when conflict- 
ing output commands are sent to the simulator (e.g., 
to come to two different headings) or when goal con- 
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straints are incompatible (e.g., turning away from a 
target while also maintaining a radar lock). In general, 
there will be two methods for dealing with such goal 
interactions. Some goals can be achieved conjunctively 
(perhaps not as efficiently as if the goals were indepen- 
dent), but sometimes it will be necessary to suspend 
certain goals temporarily when goals of higher prior- 
ity (such as evading an incoming threat) conflict with 
them. 

Dynamic, Real-Time Environment 

As suggested above, TACAIR-SOAR cannot generally 
assume that it has ample time to plan. An agent may 
be planning an intercept course to a target when it 
detects an incoming missile. In this case, the agent 
must interrupt its planning in order to react in a timely " 
fashion. As a slightly different case, the situation may 
change so rapidly that the conditions that initiated 
planning may become obsolete before planning is com- 
pleted. For example, the agent may begin planning 
which type of weapon it should employ against a tar- 
get, only to find it destroyed by some other partici- 
pant in the engagement. In both of these situations, 
the system should cease its planning activity, even if it 
did not find a result. Reactive planning systems (e.g., 
Agre & Chapman 1987; Firby 1987; Kaelbling 1986), 
and TACAIR-SOAR'S recognition-driven problem solv- 
ing address some of these issues by dynamically chang- 
ing goals and behaviors as the environment changes. 
The next challenge is to integrate deliberative plan- 
ning with dynamic reasoning in a smooth way. 

Large State Representation 
A further characteristic of the domain is that it in- 
volves rather large representations of the agent's cur- 
rent situation. The state representation includes infor- 
mation about various vehicle and weapon types, sen- 
sor information (from visual, radar, and radio sources), 
the agent's current mission goals, other "mental" an- 
notations, and interpretations of the state, actions, 
and goals of other agents. For normal recognition- 
driven problem solving, the situated TACAIR-SOAR 

agent simply reacts to various features in this large 
state by generating actions or posting new goals or 
new interpretations of the situation. 

The size of the state can impact deliberative plan- 
ning in three ways. First, any time the agent wishes to 
plan, it must construct a copy of its current state rep- 
resentation. It can then manipulate this copy without 
changing its actual representation of the world or is- 
suing real behaviors. Second, separating the two state 
representations allows the system to generate low-level 
reactions in response to one state while planning with 
the other.  Because it takes some time to create this 

mental planning state, the agent should copy only the 
necessary information for planning and no more. Fi- 
nally, some of the state information will be important 
to the current plan, while other information will be less 
important or totally irrelevant. It is not desirable for 
the agent to reason about portions of the state that 
have no bearing on the current decision. Thus, deci- 
sions about how much state to copy will have an impact 
on learning and the generality of new behaviors. 

Planning in the Face of Uncertainty 

A key feature of the tactical air domain is that there is 
generally a large number of participants in any given 
scenario. Some research (e.g., Georgeff 1984) has fo- 
cused on this problem, and it naturally will have a 
strong effect on how TACAIR-SOAR can interpret and 
predict the consequences of its actions while plan- 
ning. Anticipating the actions of cooperating agents 
may not be too difficult, because there exist social 
engagements and standard operating procedures be- 
tween agents that cooperate. Predicting the future 
actions of competing agents is somewhat more diffi- 
cult, and relies in part on recognizing the plans and 
goals of those agents (Tambe & Rosenbloom 1994; 
Wilensky 1981). 

Given the unpredictable nature of modeling other 
agents, it is most appropriate for TACAIR-SOAR to 
create completable plans (Gervasio & DeJong 1994), 
in order to react appropriately to future actions by 
other agents. Contingency plans (Warren 1976) might 
also be useful, but these are generally expensive to 
generate. In a sense, TACAIR-SOAR'S current knowl- 
edge base consists of a large completable plan, and 
such planning is consistent with our desire to integrate 
the current recognition-driven problem-solving struc- 
ture with deliberative planning. The results of delib- 
erative planning should be completable, reactive plans 
that the agent can execute and adaptin response to 
the dynamics of the environment. 

Termination of Planning 

As we have already mentioned, available time will have 
a large impact on how long any planning activity can 
continue. However, termination of planning is also in- 
fluenced by when results can be produced. Most tradi- 
tional planners have small sets of explicit, well-defined 
goals, and a precise evaluation function, so they can 
plan until a method is found to achieve their goals. 
Within the tactical air domain, there are many differ- 
ent types of goals, and different degrees to which they 
can be achieved. As an example, if an aircraft has the 
mission to protect its aircraft carrier, it may produce 
the goal of destroying an incoming attack aircraft. Af- 
ter the engagement has proceeded, the agent may find 
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itself drifting from the carrier it is supposed to protect. 
At this point, it may decide that it has completed its 
mission by "scaring off the threat, without actually 
destroying it, and it would be more dangerous to con- 
tinue than to return to its patrol position. 

The combination of limited reasoning time and ill- 
defined goals provides a further complexity for plan- 
ning. The question is how far the planning pro- 
cess should continue, and when evaluation should take 
place. 

Solutions for Deliberative Planning 
These characteristics all have an impact on how plan- 
ning can occur in an intelligent agent. Many of these 
issues have been addressed to some extent in previous 
research, but we hope to build an integrated system 
that addresses all of them. This section describes our 
preliminary efforts to develop an integrated planning 
solution that addresses all of the complexities of the 
domain. It begins with a discussion of the overall in- 
tegrated framework, and then describes specific ideas 
for each of the planning issues. 

Integrated Planning, Learning, and 
Execution 

Our commitment to an integrated system began with 
our selection of the Soar architecture (Laird, Newell, 
& Rosenbloom 1987) as the platform for develop- 
ment. Soar provides an ideal basis for recognition- 
driven problem solving, and naturally supports the in- 
tegration of execution, planning, and learning (Laird 
& Rosenbloom 1990). 

Readers familiar with Soar will recall that all rea- 
soning and behavior generation takes place in problem 
spaces, through the deliberate selection of operators. A 
fair amount of research on traditional planning within 
Soar (e.g., Lee 1994; Rosenbloom, Lee, ic Unruh 1992) 
also organizes planning knowledge as sets of problem 
spaces. Problem spaces are collections of knowledge 
that address subgoals, which arise in response to a lack 
of knowledge in a particular situation. A typical exam- 
ple for planning occurs when an agent has a number of 
candidate actions to take, but does not have the knowl- 
edge to decide between them. For example, a pilot 
must decide which type of weapon to employ against 
a target, given the current mission and circumstances 
of the environment. After planning knowledge (e.g., 
a mental simulation of the alternatives) suggests an 
ordering, the automatic learning mechanism summa- 
rizes search in the problem space into individual rules 
("chunks") that will apply in future similar situations. 

We should stress the point that the natural rep- 
resentation for a plan within TACAIR-SOAR is not a 

declarative script of actions. Rather, a plan is a col- 
lection of recognition-driven rules and operators that 
apply opportunistically in response to particular pat- 
terns of sensor values, interpretations, and goals. Thus, 
in a sense, TACAIR-SOAR will never be learning entire 
plans, but it will be repairing or completing the general 
plan composed of all of its recognition rules. 

Addressing Domain Issues 

This integrated framework suggests possible solutions 
for planning that also address the issues presented ear- 
lier. To begin with, the high degree of interaction be- 
tween goals suggests criteria for both triggering and 
evaluating new plans. Previously, we suggested that 
planning occurs when TACAIR-SOAR does not have 
the reactive knowledge necessary to choose between 
competing actions. This can be generalized to initiat- 
ing planning any time the system detects an interac- 
tion between goals that it does not know how to han- 
dle. Covrigaru (1992) and Lee (1994) have investigated 
planning methods within Soar to address interactions 
between different types of goals. Evaluation of poten- 
tial plans will be based on the resolution of individual 
interactions—as opposed to, for example, planning ex- 
haustively until all interactions are resolved. As the 
agent develops responses to individual interactions, it 
can learn partial planning results in the form of new 
recognition rules. 

These partial results also address the dynamic char- 
acteristics of the domain. Such planning will inte- 
grate smoothly with normal behavior generation be- 
cause every planning episode will cause the system 
to learn something. If it is not something that com- 
pletely resolves the current situation, it should at least 
allow the planning process to resume later without hav- 
ing to start over. Thus, particular planning efforts 
can be temporarily suspended (or perhaps abandoned 
entirely) without having been a total waste of time. 
When the system has ample time to plan (such as in a 
debriefing session), it is not clear whether the planning 
process will need to be qualitatively different. Presum- 
ably, the system will still be able to use its incremental 
planning techniques, but generate better quality plans 
because it has more time to evaluate and resolve inter- 
actions. 

Also in response to to the dynamic domain, our 
initial efforts with TACAIR-SOAR have addressed the 
issue of integrating planning with execution. Many 
of the system's actions can apply without regard for 
whether the system is currently planning. For any as- 
pects of the current situation that do not depend on 
the current planning activity, the system continues to 
generate behavior independent of other processing. 
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Because of TACAIR-SOAR'S large state representa- 
tion, we have adopted high-level, qualitative descrip- 
tions that summarize direct sensor readings, thereby 
reducing the amount of information that must be 
copied. In addition, the system attempts to make intel- 
ligent decisions about the portions of the state it cares 
about. These decisions are based on a static analysis 
of the domain knowledge, as well as dynamic reasoning 
based on the current situation. This allows the system 
to limit the amount of work it does in creating a mental 
copy of the state, which has been our primary concern 
in preliminary work on planning. 

Our hope is that this approach will also aid the sys- 
tem in reasoning in an uncertain environment. As we 
have discussed, an appropriate response to this issue 
is to generate completable plans. In TACAIR-SOAR'S 
terms, we wish to learn new rules for posting general 
goals, allowing the specific situation at execution time 
to dictate the precise actions that should be taken to 
satisfy those goals. Thus, a further aim for setting up 
a mental state for planning is to abstract away details 
that can be filled in by the situation later. 

Finally, the criteria for terminating the planning pro- 
cess arise in part from the solutions we have already 
discussed. If there is time to plan exhaustively, the 
system will generate solutions for all the goal inter- 
actions it detects. Because the system returns incre- 
mental results as it plans, it is not as important for 
it to determine a fixed stopping criterion. If planning 
must be suspended temporarily, the partial planning 
results should allow planning to resume from where 
it left off. Finally, as we have mentioned, the system 
is able to generate behavior simultaneously with plan- 
ning in many situations, so planning will not have to 
be interrupted until it is actually finished. 

Summary 

Simulated tactical air combat is an ideal, real domain 
for developing and testing new planning methods. The 
complexities of the task require us to focus on a num- 
ber of planning issues that can be safely ignored in 
traditional planning domains. Although many of these 
issues have been addressed to some extent in the plan- 
ning literature, we plan to provide an integrated so- 
lution to all of them. We have begun creating a sys- 
tem that smoothly integrates reactive and deliberative 
planning within the recognition-driven problem solving 
framework. Although our efforts with the deliberative 
planning component are young, our initial experiences 
have been encouraging. Hopefully, the complexities 
and real-time demands of the tactical air domain will 
lead us to a system that can model a continuum of 
planning processes from purely reactive to knowledge 

intensive and deliberate. 
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Introduction 
On November 4-7, 1994, the Department of De- 
fense held an operational exercise called STOW-E, 
involving over 1,800 entities in a virtual battlefield, 
making this one of the largest applications of real 
time, multi-agent simulation. The participants in- 
cluded both humans (in simulators and specially in- 
strumented vehicles) and computer generated forces, 
interacting in real-time, unscripted, realistic engage- 
ments. By 1997, DOD plans to hold a virtual theater- 
level war involving up to 50,000 entities. These sim- 
ulations provide a cost-effective and flexible environ- 
ment for training, mission rehearsal, and tactics devel- 
opment. The computer forces are implemented via a 
spectrum of approaches, from aggregate forces gener- 
ated by wargames, to human managed semi-automated 
forces (SAFORs), to completely autonomous intelli- 
gent forces (IFORs). The computer forces dominate 
in terms of sheer numbers, with at least 10 times as 
many computer generated forces as human forces. 

Our interest is in the development of IFORs, com- 
puter agents with the ability to participate fully in all 
aspects of the simulated battlefield. The Soar/IFOR 
consortium, involving the University of Michigan, In- 
formation Sciences Institute of the University of South- 
ern California, and Carnegie Mellon University, is de- 
veloping .IFORs for all military air missions: air to 
air combat, air to ground attacks, air supply, anti- 
armor attack, etc. IFORs must have many capabili- 
ties to be successful: real-time reactivity, goal-directed 
problem solving, planning, large bodies of knowledge, 
and they must coordinate their behavior with other 
friendly forces. Furthermore, to be useful and effec- 
tive in training and tactics development, the tactical 
behavior of our agents must be humanlike. We have 
demonstrated the feasibility of developing IFOR agents 
(Rosenbloom et ai. 1994), and our agents fully partici- 
pated in STOW-E, flying air-to-air, ground attack, and 
surface attack missions against human and computer 

*This research was supported under contract N00014- 
92-K-2015 from the Advanced Systems Technology Office 
of the Advanced Research Projects Agency and the Naval 
Research Laboratory. 

generated forces. 
Within this domain, coordination is one of the most 

important determiners of success. A single unit has 
only limited ability to sense its environment directly, 
and has only limited ways in which it can act. Through 
coordination of sensing, multiple agents can share their 
knowledge about the environment, thus making then- 
actions far more effective. Through coordination of 
their actions, multiple agents can avoid conflicting ac- 
tion and they can perform actions that no single agent 
can perform alone, such as mutual defense. The prob- 
lem is how to get many different agents, in different 
physical locations, with different models of the envi- 
ronment, with different physical abilities, and possibly 
different short-term goals, to work together to achieve 
their common long term goals. 

Previous work in computer-generated forces (Calder 
et cd. 1993) has not extensively modeled the coordi- 
nation of individual forces. In the majority of cases, 
either an omniscient human or computer agent pro- 
vides the appearance of coordination through low-level 
monitoring and controlling of individual agents. When 
tight coordination of behavior of a small unit is re- 
quired, such as a section of planes flying in formation, 
the aggregation is treated as a single unit. Instead of 
attempting to represent the communication and coor- 
dination of the individual planes, behavior is gener- 
ated for the section as a whole and then specialized for 
the individual unit (Rao et al. 1994). Thus, individ- 
ual units are not faced with integrating coordination 
activities with their own goals, nor do they need to 
communicate with other units. 

Our approach is straightforward. We model the 
command and control methods currently in use by mil- 
itary organizations. Thus, our agents directly model 
the performance of humans: there is a one to one map- 
ping between our agents and humans. Our agents have 
the same limits in perception and action that a human 
would have, and they must coordinate their behavior 
just as humans do, through shared knowledge and com- 
munication. Some of the advantages of tins approach 
include:. 
1. Coordinated behavior is more realistic. Our agents 

coordinate based on shared doctrine, shared mis- 
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sions, and explicit communication. Explicit commu- 
nication requires time to transmit and interpret, and 
is open to mis-interpretation, jamming, etc. By in- 
dependently modeling each entity (instead of a group 
as a whole), our agents can take the initiative when 
appropriate. 

2. Coordinated behavior should be easier for humans to 
understand because there is explicit communication 
to monitor. 

3. Coordination is possible between human and com- 
puter forces because the communication is modeled 
on human communication. 

In building our agents, we discovered that some 
of the issues that have plagued previous research in 
multi-agent coordination do not arise in this domain. 
First, coordination is possible without the addition 
of special purpose "architectural" capabilities (such 
as the generation and transmission of partial-global 
plans (Durfee & Lesser 1987; Durfee 1988)). An archi- 
tecture designed to support general intelligent agents 
— such as Soar (Laird, Newell, & Rosenbloom 1987) 
— appears to be sufficient. Coordination does re- 
quire large bodies of knowledge and inference (it is a 
knowledge-level capability (Huffman, Miller, & Laird 
1993)), but these need not be specialized except in con- 
tent. Second, our agents do not need to carry out pro- 
tracted negotiations (Rosenschein 1993; Smith 1980; 
Sycara 1989), "reason about the processes of coordi- 
nation among the agents" (Bond & Gasser 1988), or 
dynamically construct complex models of those agents 
(Ephrati & Rosenschein 1992). Because our agents are 
designed to work within the military's well establish 
hierarchy of command, control, and communication, 
and because our agents are "experts" for their tasks, 
negotiation, runtime reasoning, and complex internal 
models of friendly agents can be "compiled" out, with 
just the knowledge of how and when to coordinate re- 
maining. Our agents require only very limited informa- 
tion about other agents, such as locations, call signs, 
radio frequencies, and positions within the command 
hierarchy. 

The goal of this paper is to demonstrate the suffi- 
ciency of our simplier approach for a real-world appli- 
cation, and to analyze the complexity of coordination 
required in this domain.1 We begin by presenting a 
scenario that illustrates the coordination required in 
this domain. We then analyze the required coordina- 
tion along three dimensions: the organizations of the 
agents, the type of activities that are coordinated, and 
finally the sources of knowledge that support coordina- 
tion. Next we identify the general capabilities that are 
required to support coordination and how they are re- 
alized in our underlying architecture of choice (Soar). 
We conclude with a discussion of the limits our ap- 
proach. 

This is an extension of oar earlier work on air-to-air 
coordination (Laird, Jones, & Nielsen 1994). 

Example Scenario 
Our agents include pilots of fighter and air-to-ground 
attack planes, and a variety of controllers that provide 
mission and routing information to the planes. We at- 
tempt to realistically model current military doctrine 
and tactics. Our sources include unclassified military 
documents, books, extensive interviews with former 
U.S. Navy pilots, and observations of U.S. Navy pilots 
training in real aircraft and in military flight simula- 
tors. Our agents are built within TacAir-Soar (Rosen- 
bloom et al. 1994), our generic name for agents that 
fly simulated fixed-wing aircraft developed within Soar. 
Our agents' simulation environment is based on the 
DIS protocol (steering committee 1994).  The agents 
interact with the DIS world through ModSAF (Calder 
et al. 1993), which provides simulations of vehicle dy- 
namics, sensors, and weapons.   DIS (and ModSAF) 
support distributed, interactive, real-time simulation 
for ground, surface, and air entities. For example, in 
STÖW-E, our planes engaged both humans in simu- 
lators and SAFOR computer generated forces.   Our 
planes fired simulated exocet missiles at a real ship 
(the Hue City) that was participating in the simula- 
tion through special instrumentation, bombed a virtual 
bridge, shot down humans in simulators, and were shot 
down by humans in simulators and once by a virtual 
surface-to-air missile.  Each of our agents is an inde- 
pendent Soar system situated in its own virtual vehi- 
cle (such as an F-18), and is restricted to perceiving 
what would be available to a human in such a vehi- 
cle (via radar and vision).   Communication between 
agents takes place via simulated radios using messages 
that approximate the messages sent by humans. 

Consider the scenario in Figure 1 in which two 
fighter planes (F-18's) are flying as a section on an air- 
to-ground mission. This is similar to a mission flown by 
Soar agents during STOW-E, but has been expanded 
for expositional purposes to include a broader variety 
of coordination types (all of which are implemented in 
our agents). The original goal of the mission is to bomb 
Target 1. Once the planes are airborne, they join up 
into a prebriefed formation (at time 1), and start on 
their prebriefed flight plan (Elmer to Cougar to Wanda 
to Target 1). The lead (Fl) controls the section and 
makes all section-level mission decisions, as well as fly- 
ing his own plane. The wingman (F2) flies so as to 
maintain the current formation. 

While flying their route, the lead checks in with a 
controller (the TACC) to receive permission to enter 
the combat area, and to receive possible changes in 
routing information. The controller may request au- 
thentication to verify that the plane is friendly. The 
job of the controller is to verify that planes are where 
they belong, to perform air traffic control to avoid col- 
lisions (usually by assigning different routes and alti- 
tudes), and to relay commands from other command 
entities. 

Let us assume that an E-2C (at time 2) informs the 
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rXACC 

Figure 1: Example Scenario 

planes of an approaching threat (the MiG-23's). Usu- 
ally there would be other planes available to deal with 
the MiG's, but this allows us to illustrate some im- 
portant types of coordination. The MiG-23's must de- 
pend on a ground controller (GCI), which has a much 
more powerful radar to guide them toward the engage- 
ment by giving them bearing and range information of 
the F-18's. Similarly, the F-18's will get information 
about the MiG's from the E-2C. However, once the F- 
18's have the MiG's on their own radar, and they have 
been cleared to engage by their controller, they will 
prosecute the engagement on their own, receiving in- 
formation from the controller only when they request 
it (such as if they lose radar contact). 

During the engagement, the lead of the F-18's com- 
municates to the wingman to change formation to one 
that provides more mutual support, and to "sort" the 
MiG's so that they each have a separate target. Simi- 
larly the MiG's communicate to perform their tactical 
maneuver (called a pincer). In this engagement, we 
assume that both MiG's are destroyed (at time 3). In 
general, the F-18's would jettison their bombs prior to 
the engagement to increase their maneuvering ability, 
but we will assume that they did not and continue then- 
ground attack mission. 

Once the F-18's destroy the MiG's, they head back 
to their next waypoint (Cougar). At about this time, 
the forward air controller (FAC) comes under attack 
by enemy tanks. The FAC calls to another controller 
(the TAD) and requests an air strike. The TAD con- 
tacts the F-18's (at time 4) and gives them a new mis- 
sion. The lead of the F-18's must then plan their final 
attack altitude and geometry from the "initial point" 
(Wanda) to the target and communicate it to the wing- 
man. As they approach the initial point (wanda), the 

lead communicates the mission to the FAC to verify the 
target, etc Once the FAC verifies the mission and vi- 
sually sites the planes, the FAC sends them a "cleared 
hot" message to attack the target. The F-18's perform 
a 90-10 maneuver (planned earlier by the lead) to pro- 
vide separation during the final bombing run. Since 
the tanks are moving, the F-18's must visually acquire 
them, modify their approach, and drop their bombs 
(at time 5). They then exit the attack area and fly 
back on their egress route (not shown). 

Although, our agents embody all of the reasoning 
and communication required in this scenario, they do 
not embody all that humans use in the complete range 
of air-to-air and air-to-ground missions. For example, 
our planes only fly in groups of two (sections), not in 
groups of three or four (divisions). Also, a forward air 
controller can mark a target for a plane by. using a flare, 
a beacon, or a laser. In addition, our E-2C agents do 
not direct planes to specific air targets. Currently they 
only provide contact information that our agents use 
to make their own decisions. We plan to implement all 
these types of coordination in the near future. 

Coordination Analysis 
The purpose of this analysis is to demonstrate the di- 
versity of coordination being performed by our agents 
across a variety of dimensions. 

Coordination Organization 
The previous example illustrates the three organiza- 
tional structures of coordination used by the military 
and our agents. In all cases, a section or a plane is con- 
trolled by another entity (lead, or controller), but the 
individual agents still have significant autonomy and 
responsibility for their own actions.   The command 
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structure is relatively static, and a section is in con- 
tact with only a single controller at a given time. The 
current controller for a section is determined by the 
mission briefing, or by explicit communication from 
another controller. 
• Master slave: The lead dictates the actions of the 

section, but the wingman still decides how best 
achieve and stay in formation. The wingman can 
become lead if he has better situational awareness 
or weapons capability. 

• Centralized: The GCI and E-2C (as well as the 
TACC and TAD) can provide information and con- 
trol for many sections of planes. 

• Distributed: The TACC, TAD, and FAC form a dis- 
tributed control network in which requests for mis- 
sions are propagated through the network and as- 
signed to sections. The controllers coordinate the 
activities of multiple fighters by routing them, as- 
signing altitudes, communication frequencies, and 
attack times. 

Types of Coordination 

Within the different coordination organizations listed 
above, the agents coordinate a variety of different ac- 
tivities. The left half of Figure 2 lists the types of 
coordination found between the lead and wingman in 
terms of coordinated action, sensing, missions, and sec- 
tion organization. This organization is not represented 
explicitly within the agents. Most of the coordination 
occurs in terms of action: flying in formation and em- 
ploying their weapons. They coordinate in sensing, by 
directing their radars so that they are not completely 
overlapping. They explicitly communicate radar and 
visual sightings. They also coordinate their execu- 
tion of their mission, and the lead will communicate 
changes to the mission, current progress in the mis- 
sion, and intent, such as the decision to intercept en- 
emy planes. Finally, they coordinate the organization 
of the section. 

The right half of Figure 2 shows the types of co- 
ordination found between a section and a controller. 
Here there is no coordination of their joint actions 
(although the mission coordination provides indirect 
coordination of the section with other planes). The 
coordinated sensing is in similar spirit to the coordi- 
nation within a section, although in this case the con- 
trollers have much better radar capabilities. The most 
involved coordination comes under the mission head- 
ing, where the controllers can change almost any as- 
pect of the mission for a section, including the altitude 
for flying routes, the routes, the controllers the section 
contacts along the route, the radio frequency to use 
during the contact, the target location, and the time 
of the attack. Because the timing of an attack is criti- 
cal (e.g. it may be coordinated with the ending of an 
artillery barrage), the controllers also provide a time 
hack, to synchronize everyone's watches. The need to 
attack at a specific time (+/- ten seconds), forces the 

planes to adjust their speed dynamically or even go 
into holding patterns. 

Basis of Coordination 

In this domain, the key to coordination is knowl- 
edge. The agents must know the appropriate tech- 
niques and methods for performing their specific tasks, 
such as maneuvering, sensing, and employing their own 
weapons. They must know their responsibilities for 
their current mission, the details of that mission, and 
who the other agents are that they must interact with. 
They also must known in general terms when and what 
to communicate to which agents during the mission, 
and what to do in response to messages from others. 
We have identified four different sources of coordina- 
tion knowledge. 

Background Knowledge: Common Doctrine 
and Tactics. Most of the long-term knowledge in 
our agents consists of knowledge about how to perform 
their missions. This includes how to maneuver, sense 
and employ weapons, but it also includes doctrine and 
tactics which specify methods and procedures for co- 
ordinating with other agents. This doctrine includes 
specific roles for individuals (such as lead, wingman, 
TAC, TADD, FAC) and the specific duties to be per- 
formed. Thus, there is no need for the lead and wing- 
man to negotiate how to maintain the formation. The 
wingman just does it. This is a social contract, where 
agents implicitly create coordinated behavior by be- 
having according to certain prespecified rules (Shoham 
& Tennenholtz 1992). 

The reliance on common background knowledge to 
support coordination in the military is not surprising. 
The military has sufficient planning and training time 
to develop and implement common doctrine and tac- 
tics. The individual agents need not determine the 
best coordination strategy on their own, but can rely 
on compiled versions of the coordination strategy. 

Mission Briefing. Before a mission, the partici- 
pants are briefed on the tactical situation (such as 
weather and enemy activity), their responsibilities, and 
the responsibilities of others. The briefing helps estab- 
lish specific operational parameters required for coor- 
dination, such as the partners of a section, their ini- 
tial formations, the methods for communication (radio 
frequencies, call signs), the default radar contract, the 
default method for sorting enemy planes, any specific 
tactics the section plans to employ, the waypoints of 
the mission, the controllers who will be contacted dur- 
ing the mission, the authentication procedures, and so 
on. Based on the mission briefing, the lead will fill 
in any details, such as an attack plan, based on the 
mission and the tactical situation. In our agents, the 
mission briefing knowledge is not ''compiled" into the 
agent, because it changes from mission to mission. It 
is a set of parameters that are loaded into our agents 
before they start their missions. 

28 



Lead and Wingman Coordination 
Action 

Maneuvering 
Joining, flying in & changing formation 
Turning 
Tactical maneuvers 

Weapons employment 
Targeting & sorting 

Sensing 
Opponent sighting & tracking 
Friendly sighting & identification 

Mission 
Mission progress 
Current intent 
Attack plan 

Organization 
Change the lead 

Controller and Lead Coordination 
Action 
Sensing 

Opponent sighting & tracking 
Friendly sighting & identification 

Mission 
Change of mission 

Altitude, route, contacts, radio freq, 
target, bombing time,... 

Current intent 
Mission progress 
Mission authorization 
Time synchronization 

Organization 
Change in communication procedures 

Figure 2: Types of Coordination Between TacAir-Soar Agents. 

Observed Behavior. During a mission, the mem- 
bers of a section can directly observe each other's be- 
havior. Thus, behavior alone can be a signal for co- 
ordination, as when a lead makes a small turn. In 
TacAir-Soar, the only use of coordination through ob- 
servation is when the wing responds to small turns of 
the lead. This will be expanded when our agents need 
to fly without radio communication because of jam- 
ming or the danger of detection. 

Explicit Communication. The most flexible way 
to coordinate behavior is to explicitly communicate 
knowledge and goals between two agents. In this do- 
main, it is via radio. We have attempted to replicate 
the communication used by humans for the missions 
performed by our agents. There are approximately 70 
message templates that our agents can send and re- 
ceive. These message templates approximate the lan- 
guage used by naval aviators and are easily understand- 
able by humans. 

Coordination Capabilities 
In this section, we summarize the cognitive capabil- 
ities required to support coordination in our agents. 
This is based on types of coordinated behavior (act- 
ing, sensing, mission, etc.), and the methods for shar- 
ing knowledge and goals. These capabilities serve as 
a requirements list for constructing an agent that can 
coordinate with others in domains such as tactical air 
combat. For each capability, we describe briefly how it 
is implemented in TacAir-Soar. 

Extensive Knowledge Base. Our approach relies 
heavily on the fact that the individual agents are ex- 
perts at performing their missions and interacting with 
others. Each agent must have an extensive knowledge 

base that includes all of the tactics and doctrine ap- 
plicable to its possible roles in the missions in which it 
will participate. For example, a wingman must have 
the same knowledge of doctrine and tactics as the lead, 
so that the wingman can take over when necessary. 

TacAir-Soar's knowledge is encoded as rules. Our 
attack aircraft have over 2600 rules, while our ground- 
based controllers have over 1800 rules. The doctrine 
and tactics are encoded within a hierarchy of inter- 
twined goals that are dynamically instantiated based 
on the current situation and mission. 

Parameter-driven Behavior. An agent must not 
be limited to only one type of behavior, but must be 
able to perform a variety of activities in coordination 
with others. In our agents, the mission briefing re- 
ceived before launch and the mission changes received 
from controllers dynamically determine the goals of our 
agents. The agent's behavior must be parameterized 
so that the knowledge relevant to the current mission is 
used. These may sound trivial, but for some complex 
missions, the information in the briefing may involve 
fragments of plans that the agent must integrate into 
its overall behavior at the appropriate times. Thus, 
the generators of the agent's behavior must be flexible 
enough so that they-can be modified at any time. 

In TacAir-Soar, all mission-related behavior is based 
on a representation of the current mission that is held 
in a working memory. This can be examined by the 
rules that make up its long-term knowledge. The mis- 
sion is specified at briefing time, but also can be dy- 
namically changed later. 

Reactive Execution and Interruptible Process- 
ing. A wingman must respond quickly to changes in 
the lead's behavior. Computer generated forces must 
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in general be reactive, but coordination also requires 
that they can interrupt their current goals to process 
and respond to an urgent message. 

In TacAir-Soar, the wingman's main goal is to fly in 
formation with the lead. Whenever the wingman is out 
of position, rules fire to propose operators to modify 
the heading, speed, or altitude. Whenever the wing- 
man receives radio messages from the lead, rules fire 
to propose operators which in turn perform an action 
appropriate to the message in the current situation. 

Generate and Comprehend Messages. In order 
to communicate with other agents, an agent must be 
able to translate its internal information about its 
goals, its perception of the world, and its current ac- 
tions, into a form that can be understood by other 
agents. The converse is translating messages from 
other agents into an internal representation that the 
agent can work with. The general solution to both 
requires full natural language. 

In the current version of TacAir-Soar, we finesse the 
1 general problem and use a template-based approach 

where we prespecify the form of the messages that 
the system can generate and accept. Our agents know 

! when to generate these messages. They also know how 
to interpret these messages and modify their own inter- 
nal knowledge structures appropriately. Thus, we've 
implemented the types of communication required by 
our agents but gone no further. However, the human 
interactions themselves are very stylized, with a strong 
emphasis on encoding information into short phrases 
whenever possible. For example, a pilot might send 
"bogey dope" to a ground controller, which is request 
for information on the current bogey that the pilot is 
engaging. This approach has been successful for the 
types of communication our agents need to produce, 
and is natural enough so that humans can fly as lead 
or wingman with our agents using a simulation inter- 
face with menu-driven communication that approxi- 
mates the cockpit of an F-14, MiG-29, or E-2C (van 
Lent & Wray 1994). The human communicates with 
our agents through a menu-driven interface, and the 
messages from our agents are understandable to the 
human. However, this approach will break down when 
extended to unrestricted natural language interactions 
with real pilots. To that end, we are investigating gen- 
eral natural language approaches (Rubinoff & Lehman 
1994). 

Discussion 
On the surface, our approach might appear to suffer 
from rigidity because it depends on a set of "canned" 
interactions based on existing doctrine and tactics. 
However, our agents are not blindly applying a fixed 
doctrine independent of changes in the environment. 
Instead, our agents are continually reassessing the sit- 
uation, dynamically stringing together bits and pieces 
of existing doctrine and tactics that are appropriate 
to each situation, possibly generating novel behavior 

(when viewed over time). Thus, our agents do very 
well as long as the situation is covered by some com- 
bination of existing military practice (which includes 
defining new missions and many types of changes to 
the organizational structure). In completely novel sit- 
uations, our agents will use whatever pieces of doctrine 
that are relevant to the situation. However, our agents 
do not have the ability to step back and reason from 
first principles about what would be a new, possibly 
novel coordinated response to the situation (although 
this is one of our research areas). 

The long term goal of our work is to build intelligent 
autonomous agents. In this paper, we have demon- 
strated that it is possible to create agents for a complex 
environment in which coordination is critical. Our ap- 
proach has been straightforward. We try to model the 
coordination methods used by humans, and to date, 
we have implemented coordination without negotia- 
tion, extensive internal agent modeling, or special ar- 
chitectural mechanisms. The coordination arises out 
of shared doctrine and tactics, shared knowledge of 
missions, observations of behavior, and explicit com- 
munication. Our success is heavily dependent on four 
characteristics of our domain which simplified the im- 
plementation of coordination: the shared goals of the 
agents, the expert-level performance (and knowledge) 
of the agents, the well-defined methods and procedures 
of the military that we are modeling, and the availabil- 
ity of experts that are willing and able to provide the 
details of procedures. 

In the near future we will be extending our agents 
to all military air missions, including helicopters, joint 
mission with ground forces, and large scale coordinated 
strikes (involves 20-30 aircraft at once). These new 
missions with allow us to evaluate the sufficiency of our 
approach in an even more complex and "coordination- 
rich" domain. 
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Abstract 

In support of the Soar/IFOR project's 
goal of providing intelligent forces for dis- 
tributed interactive simulation environ- 
ments [Laird et al., 1995], the NL-Soar 
project works toward the implementation 
of a full natural language capability for 
Air-IFOR agents. In this paper we dis- 
cuss the design of that language capa- 
bility (NL-Soar) and its integration into 
TacAir-Soar agents. In particular, we 
demonstrate how NL-Soar's linear com- 
plexity, interruptibility, and atomaticity 
of language processing provide language 
comprehension and generation processes 
that do not compromise agent reactivity. 

1    Introduction 

Autonomous intelligent forces (IFORs) play an 
increasingly critical role in both large-scale dis- 
tributed   simulations  and   small-scale,   focused 
training exercises.  An IFOR is a complex agent 
that requires diverse capabilities to perform at a 
useful level of functionality. Since an IFOR's role 
will often be to replace one or more individuals in 
an engagement, the ability to communicate in nat- 
ural language can be a key capability contributing 
to its overall performance. An agent that is rigid 
in its communicative ability may introduce a brit- 
tleness into the simulation (i.e. a tendency to fail 
in unexpected ways) that has nothing to do with 
imperfections in strategic or tactical knowledge. 
Thus, in building TacAir-Soar agents to partici- 
pate in beyond-visual-range combat [Laird et al, 
1995], an NL capability is needed to ensure reac- 
tive, human-like performance in basic interactions 
among pilot, wing, and air intercept control (AIC). 

In [Rubinoff and Lehman, 1994a] we identi- 
fied three main characteristics of communication 
during air combat that present challenging ar- 
eas of research: (1) it occurs in real-time, (2) it 
must seamlessly integrate with the agent's non- 
linguistic capabilities, e.g.  perception, planning, 
reasoning about the task, and (3) its content must 
be comprehended and generated in accordance 

with performance data, i.e. with all of the idiosyn- 
cratic constructions, ungrammaticalities, and self- 
corrections found in real language. Within the 
context of these research issues, we introduced 
NL-Soar, a language comprehension and gener- 
ation capability designed to provide integrated, 
real-time natural language processing, for systems 
built within the Soar architecture [Lewis, 1993; 
Nelson et al, 1994a; Nelson et al, 1994b; Rubi- 
noff and Lehman, 1994b]. In this paper we concen- 
trate on issues (1) and (2), exploring our progress 
toward their solution using NL-Soar in Soar-based 
Air-IFOR agents. 

2    Demands of reactivity 

The naive approach to communication between 
agents, and the one available using off-the-shelf 
technology, treats language as front-end and back- 
end interfaces. Messages are comprehended by 
a front-end module, which creates a system- 
dependent representation of the message that can 
be used by the other modules responsible for the 
agent's behavior. Similarly, when an agent needs 
to send a message, that same representation is 
passed to a back-end module that generates an 
output message to be directed to other agents.1 

This makes language an all-or-nothing en- 
deavor, the implications of which can be seen in 
Figure 1. In this typical tactical air scenario, blue 
is flying an intercept (1) and is actively pursu- 
ing the goal of achieving its launch acceptability 
region (LAR) when an incoming message arrives 
(2). The message is buffered until the current goal 
is achieved and blue has fired a missile (3). Next, 
processing of the input begins (4); it ends some^ 
time after red has returned fire (5) and (6). Only 
after the communiation has been understood can 
blue begin its evasive maneuver (7). 

It is clear that reactivity is compromised if un- 
derstanding must be postponed until the current 

'The approach being described here does not de- 
pend in any way on the content of the message or 
the style of langnage accepted and generated. Thus 
it would apply equally whether the language passed is 
natural language or a formal communication protocol 
(such as CCSIL [Salisbury, 1995]). 
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goal has been accomplished, and then is pursued 
to the exclusion of all else. In particular, two cases 
are cause for concern. Consider first what hap- 
pens at (2) if the content of the message is rele- 
vant to the situation at the time it is received. In 
this case, buffering the message leads, at best, to 
wasted processing in the future (when the message 
has become obsolete). At worst buffering compro- 
mises the decision making of the agent by preclud- 
ing access to timely, necessary information. To re- 
move this possibility, we could modify the control 
of the agent to always attend to communication 
needs first. But this would simply put us in the 
second problematic situation more often. 

In this second case (4), if the content of the mes- 
sage is not critical, devoting processing to it rather 
than other things can compromise the agent's re- 
activity as well. In short, shutting out either com- 
munication processes or non-communication pro- 
cesses can be equally dangerous. The point, of 
course, is that you can't tell which situation you 
will be in until you process the message, at which 
time it is too late to change your mind.2 

2 Dedicating a separate, parallel process to commu- 
nication might ameliorate the problem but won't nec- 
essarily solve it. A separate process will be able to 
comprehend or generate the message while the agent 

Figure 2 gives a more desirable version of the 
same task events. Again, the pilot is flying an in- 
tercept (1), trying to achieve firing position when 
a message arrives (2). The message is attended to 
immediately, its processing interleaved with the 
ongoing effort to achieve LAR (3). In this exam- 
ple, the message is completely processed by the 
time the pilot is in a position to fire (4), and eva- 
sive maneuvers can be started immediately, well 
before red returns fire. 

The model in Figure 2 overcomes the problems 
in the simpler model of Figure 1 by intertwining 
the different strands of agent behavior at the sub- 

is performing other tasks, but will have to work in 
isolation, i.e. cut off from the -changing situation and 
goals of the agent. To the extent that there is relevant 
information that is unavailable during communication 
processing, the agent may formulate interpretations or 
communications that are inappropriate or out of sync 
To the extent that the relevant information is commu- 
nicated to the language process, parallelism is lost. In 
the tactical air domain information is updated quickly, 
and so an increasing proportion of CPU cycles will be 
necessary to keep the two processes in sync. Thus, 
to maximize reactivity, we conjecture that a separate 
process for communication would be more costly and 
no more effective than the method outlined in the fol- 
lowing section. 
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task level rather than at the full task level. In 
other words, we can view the all-or-nothing model 
as a degenerate case of Figure 2, one in which the 
granularity of the interleavable components is as 
large as possible. As we have seen, the disadvan- 
tage of choosing the maximal grain size is that the 
components are too large for the agent to behave 
in a timely fashion. 

3    Achieving Interleavable Commu- 
nication 

For NL-Soar to provide a reactive, interleavable 
language capability for IFOR agents, the system 
as a whole must have three properties: linear com- 
plexity, intermptability, and atomaticity. The first 
property, linear complexity, means that processing 
to understand or generate a message must take 
time that is roughly linear in the size of the mes- 
sage. This is necessary to keep pace with human 
rates of language use. The second property, inter- 
ruptability, ensures that time-critical task behav- 
iors cannot be shut out by language processing 
(and vice versa). The third property, atomaticity, 
ensures that if language processing is interrupted, 
partially constructed representations are left in a 
consistent and resumable state. 

To understand how NL-Soar provides the de- 
sired communication model, we must first briefly 
review the components out of which Soar systems 

are organized. Figure 3 is a graphical representa- 
tion of a hypothetical Soar system that uses NL- 
Soar for comprehension and generation. Linguistic 
processes, like all processes in Soar, are cast as se- 
quences of operators (small arrows) that transform 
states (boxes) until a goal state is achieved. The 
triangles in the picture represent problem spaces 
which are collections of operators and states.3 The 
comprehension problem spaces contain operators 
that use input from the perceptual system to build 
syntactic and semantic structures on the state; the 
generation problem spaces contain operators that 
use semantic structures to produce syntactic struc- 
tures and motor output. Note that the problem 
space labelled Top is the only space connected to 
the perceptual and motor systems and it is this 
space that is designated by the Soar architecture; 
all other problem spaces are provided by the sys- 
tem designer. 

The dotted lines in the figure represent Soar im- 
passes which arise automatically when there is a 
lack of knowledge available in the current problem 
space. When an impasse arises, processing contin- 
ues in a subspace until the goal state in the sub- 
space is reached. Note that impasses are a general 
recursive structure (a subspace can impasse into 
another subspace) that gives rise to a goal/subgoal 
hierarchy, or goal stack. The thick banded arrow 

3 For more details on how Soar uses problem spaces, 
states and operators to organize its processing see 
[Laird et a/., 1987; Laird et al., 1995]. 
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that overlays the impasse represents the resolu- 
tion of the impasse, and the new knowledge (called 
chunks) that results from Soar's learning mecha- 
nism. Chunks capture the work done in the sub- 
space, making it available in the superspace with- 
out impasse during future processing. This means 
that when a system structured as in Figure 3 is 
fully chunked all of its behavior will be produced 
by operators in the Top space. 

We now have all the pieces to build an inter- 
leavable language capability. In the following sec- 
tions, we address how to achieve linearity, inter- 
ruptability, and atomaticity using these compo- 
nents. For the time being we will consider com- 
munication only in systems where the desired be- 
havior shown in Figure 2 would occur completely 
within the Top problem space when fully chunked. 
We call a system organized in this way, a Top-state 
control model.4 

3.1    Achieving Linear Complexity 
Communication in an IFOR must occur in real- 
time to keep pace with the flow of human events. 
This is not a statement about how fast the sys- 
tem must run, per se. Rather, it is a theoreti- 
cal statement about how processing must occur 
within the system. Although there is some vari- 
ability (some words do reliably take longer to pro- 
cess than other words), in general, the amount 
of time taken by people is linear in the num- 
ber of words in the utterance. A number of de- 
sign constraints follow from this simple regular- 
ity [Lehman et al., 1996], e.g. construction of the 
meaning of the sentence must proceed incremen- 
tally, and different knowledge sources (syntax, se- 
mantics, pragmatics) must be applied in an inte- 
grated rather than pipe-lined or multi-pass fash- 
ion. NL-Soar provides these properties [Lehman et 
al., 1991a; Lewis, 1993]. Briefly, the system relies 
on Soar's notion of impasse to control the search 
through its linguistic knowledge sources, and then 
on Soar's learning mechanism to compile the dis- 
parate pieces of knowledge into an integrated form 
that can be applied directly (i.e. in approximately 
constant time/word) in the future. 

Figure 4 depicts the process graphically for one 
type of language operator, expanding the left por- 
tion of Figure 3. Consider the arrival of a new 
word into the Top state and assume that the 
system has not encountered the word in a simi- 
lar context in the past (i.e. the system has no 
pre-chunked knowledge about how to process this 
word). Once the word has been attended to, the 
learn-comprehension operator will be selected, af- 
ter which an impasse will arise. Problem solving 

TOP 
attend 
learn-comprehension 
u-constructorl 
u-constructor2... 

Create-operator 
new-u-constructor 
return-operator 

U-construct 
link 
snip 

Generate' 
try-link 
try-snip 

Constraint-check 
check-agreement 
check-number... 

4 As we will see in Section 4, this is not the only 
structure permitted by Soar, but it is a valid organi- 
zation and the simplest place to begin. 

Figure 4: Achieving linearity through learning 

will continue in the Create-operator space which 
will generate a symbol for a new u-constructor. 
A u-constructor is a language operator that fits 
the new word into the current syntactic structure 
for the message. The u-constructor is composed 
piecemeal in the U-construct space which per- 
forms links and snips on syntactic trees based on 
knowledge provided by Generate and Constraint- 
check. As the goal of each subspace is achieved, 
each impasse is resolved, creating chunks. Only 
two kinds of chunks concern us here. The imple- 
mentation of the u-constructor is contained in the 
chunks created when the impasse between Create- 
operator and U-construct is resolved. This means 
that the syntactic tree that resulted from the se- 
quential links and snips that were done in the 
lower spaces will now be produced immediately 
whenever this u-constructor executes. The u- 
constructor itself is returned from Create-operator 
to the Top space, resulting in a chunk that tells 
when this u-constructor can apply in the future. 
Note that the next time this word is seen in a 
similar contect, this chunk will propose the new 
u-constructor directly in the Top state. In other 
words, once we have learned the top-level opera- 

# 
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tor, no impasse will occur. Instead, the (possibly 
lengthy) problem solving that took place in the 
subspaces has been compiled into a single Top- 
space operator that executes directly to build the 
relevant syntactic structure on the Top state. 

Figure 4 shows how the application of gen- 
eral knowledge about syntax is contextualized and 
made efficient. A similar story can be told about s- 
constructors, the Top-space operators that fit the 
new word into the semantic and discourse struc- 
tures maintained on the Top state. Thus, once 
behavior is fully chunked, the arrival of a message 
results in only a small number of Top operators per 
word, the linear complexity we were after. Equally 
important, the language process itself is now rep- 
resented in the Top space in terms of more finely- 
grained operators (u- and s-constructors) that cre- 
ate the opportunity for interleavability. On the 
generation side, of course, there is a different task 
decomposition producing a different set of Top- 
space operators, but the principle is the same. 

3.2    Achieving Interruptability 
In Soar, agent behavior is produced by the appli- 
cation of operators to a state. Moreover, the ar- 
chitecture defines the application of an operator as 
a non-interruptable unit of work. In other words, 
once an operator has been selected for application, 
all the state changes associated with that operator 
are guaranteed to be made before any other opera- 
tor is selected. What does this mean for NL-Soar? 
In short, it means that the Top-level language op- 
erators dictate the granularity of the interleavable 
components. To anchor the point in the context of 
Figure 4, once a u-constructor exists, we cannot in- 
terleave changes to the syntax tree with other non- 
linguistic tasks. Put more strongly, once the u- 
constructor is selected, all other subtasks are shut 
out for the duration of its application. In addition, 
if the Top state changes during the application of 
the u-constructor (via perception), those changes 
are effectively invisible until the u-constructor's 
state changes have been made.5 

How is this situation different from the one in 
Figure 1, where lack of interruptibility meant re- 
activity was diminished to the point of inviting 
wasted work, if not disaster? The difference here 
is that the granularity of NL-Soar's operators is 
small enough to allow interruptibility below the 
full task level. The current scheme separates the 
work of attention from work done to the syntac- 

sThis is an overstatement. In fact, it is possible to 
encode knowledge in Soar in such a way that it is tied 
only to the state, not to any particular operator. Such 
knowledge will lead to state changes regardless of what 
operator is being applied. Since most task knowledge 
is tied to task operators, however, the discussion above 
is still a useful way to think about what's going on. 

tic tree (u-constructors) from work done to the 
semantic and discourse models (s-constructors). 
Thus, the current comprehension capability al- 
lows for interruption between each set of state 
changes. Note, however, that we could have made 
this choice differently. We could, for example, 
build both syntactic and semantic structures in 
the impasse under the learn-comprehension op- 
erator. The resulting Top-space comprehension 
operator would effectively bundle all of compre- 
hension into a single operator.6 Alternatively, we 
could make link and snip the Top operators, giv- 
ing an even finer grain. Although it is clear that 
the architecture permits a wide range of choices, 
choosing the right granularity is not a wholey un- 
principled exercise. In general, the more work en- 
compassed by a Top operator, the more specific 
will be the conditions under which it can apply. 
The more specific the conditions the less transfer 
of the knowledge to new situations and the more 
learning events will be required to get fully chun- 
ked language behavior. On the other side, the less 
work encompassed by a Top operator, the more 
operators per word there will be, until, eventually, 
the number will reflect some non-linear quantity 
(e.g. the size of the parse tree). In Section 4, be- 
low, we demonstrate how the operator granularity 
we have chosen allows both transfer and interleav- 
ing while maintaining linearity. 

Now that we have language operators of a size 
that allows interruptibility, the next question that 
needs to be addressed is: how do you decide which 
type of operator, linguistic or non-linguistic, to 
select next? Many control schemes are possible, 
ranging from random selection to a complete par- 
tial ordering over all the operators in the system, 
to always attending to communication first (or 
last). In integrating NL-Soar with TacAir-Soar we 
will use random selection for its simplicity. What 
is important to remember, however, is that under 
Top-state control the selection decision is made on 
an operator by operator basis, not task by task. 

3.3    Achieving Atomaticity 
Recall that atomaticity ensures that if language 
processing is interrupted, partially constructed 
representations are left in a consistent and re- 
sumable state. Given our discussion above, 
it would seem that the architecturally enforced 
non-interruptability of operators would guarantee 
atomaticity as well. This is certainly true if all of 
the language behavior is impasse-free. Suppose, 
however, that the system is in the middle of learn- 
ing a new u-constructor or s-constructor, as in Fig- 
ure 4, when state changes create a preference for 
a non-linguistic Top-space operator. In this case, 

6 An early version of NL-Soar did, in fact, use this 
scheme [Lehman et al., 1991b]. 
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Figure 5: The lead TacAir agent composes a message while tracking a threat and flying 

once the operator currently being applied in the 
lowest subspace is finished, the task operator will 
be selected in the Top space and the language goal 
stack will collapse. Can we be sure that we have 
been left in a consistent state so that language 
processing can be smoothly resumed? 

The answer is yes because the design of NL-soar 
ensures that no changes are actually made to the 
language data structures on the Top state until the 
u-constructor is returned. Look again at Figure 
4. The only operator that can result in changes to 
the Top state is Create-operator's return-operator. 
But if it is being applied when a preference is cre- 
ated for a Top-space task operator, then we know 
it will complete, the results will be returned, and 
the u-constructor proposal chunk will be built. If 
the subspace operator is not the return-operator, 
no results will be returned from the top-most im- 
passe and no proposal chunk will be built for the 
u-constructor. Observe, however, that the con- 
ditions that led to the learn-comprehension oper- 
ator in the Top space may well still obtain. So 
once the task operator has been applied, language 
may be resumed. Since no u-constructor was built, 
the system will have to rebuild the goal stack 
to continue. In practice, the situation is not as 
bad as it sounds because chunks may have been 
built in the subspaces during the previous learn- 
comprehension processing that were not specific 
to the particular u-constructor. These chunks will 
transfer to the current situation and the impasses 
that created them will be avoided. 

4    Bringing it all together in TacAir- 
Soar 

In Section 2 we argued that a communication ca- 
pability for IFORs had to have three properties: 
linear complexity, interruptability, and atomatic- 
ity. In the previous section we introduced the 
Top-state control model in which whole tasks are 
interleaved on an operator-by-operator basis and 
communication is just another task.  One of the 

interesting characteristics of systems organized as 
in Figure 3 is that the goal stack is never shared 
across linguistic and non-linguistic tasks; the need 
to understand or produce a message pulls the sys- 
tem out of a task goal stack. As a result, Top-state 
task operators, like the Top-state language oper- 
ators, tend to represent subtasks of fairly short 
duration. 

In contrast, systems like TacAir-Soar are com- 
posed of a Top task operator of very long dura- 
tion, and a goal stack that reflects many levels 
of abstraction of that task. Each level stays ac- 
tive as long as it is being carried out. In partic- 
ular, TacAir uses Soar's Top state to keep track 
of the "execute-mission" task, which stays active 
for the entire simulation. Under this will be a 
stack of sub-tasks, such as "mig-sweep", "inter- 
cept", "employ-weapons", and so on, each repre- 
senting a more detailed view of what the agent is 
currently trying to do. Much of TacAir's knowl- 
edge of its current situation and goals is stored in 
sub-states associated with these subtasks, not on 
the Top state.7 Thus, if TacAir switched to lan- 
guage in its Top state, it would lose much of this 
knowledge. Clearly, TacAir-Soar is incompatible 
with the Top-state control model outlined above. 
To understand how to modify Top-state control 
without sacrificing linearity, interruptibility and 
atomaticity, we must answer the question: what 
role, exactly, does the Top state play in maintain- 
ing each property? 

For linear complexity, the role played by the 
Top state is simply a place to apply the so-called 
Top-state operators. In reality, what is critical 
for linear complexity is that there is an effective 
procedure for building the top-level language op- 
erators, and that only a small number of them are 
necessary for each word in the message. For in- 
terruptability and atomaticity, the Top state does 
play a more central role. Specifically, it must be 
the place where Top-level language operators leave 

7 A fuller description of TacAir-Soar can be found 
in [Laird et d., 1995]. 
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Figure 6: Figure 5 continued: Pilot continues to talk as wing begins to listen 

their results because it is the only state that is 
guaranteed to still be in the goal stack when lan- 
guage processing resumes. Thus, where top-level 
language operators are applied is immaterial as 
long as they leave their results on the Top state 
where they can be found whenever, and wherever, 
language processing resumes. 

Separating the question of where top-level lan- 
guage operators are applied from the question of 
where they leave their results allows us to define a 
variety of virtual Top-state control schemes. The 
simplest one, and the one we use when integrating 
NL-Soar with TacAir agents, is to interleave lan- 
guage operators with whatever task operators are 
available in the lowest problem space in the goal 
stack. Because the goal stack grows and shrinks 
over time, the interleaving of communication will 
take place more or less throughout the range of 
non-linguistic subtasks. The simplicity of the in- 
tegration is extended by allowing the architecture 
to decide randomly between language and non- 
language operators whenever both types are ap- 
plicable in the current situation. 

Figures 5 through 7 capture a portion of the 
behavior of two TacAir-Soar agents running with 
a fully-chunked NL-Soar under virtual Top-state 
control.8 In the scenario depicted, two pilots fly 

'Requiring NL-Soar to "learn while doing" would 
be equivalent to expecting the pilot to learn the do- 
main language while flying the plane in battle. Con- 
sequently, we use off-line training to allow NL-Soar to 
leaxn from experience in a non-real-time setting. This 
gives the system the time it needs to integrate its dis- 

F14s as a section with a single red plane flying 
against them. ParrotlOl is the lead and Parrotl02 
is the wing. The timelines in the figures show 
the operators that each agent executed in a par- 
ticular engagement, together with those events in 
the external world that affect or depend on their 
behavior. Language operators are indicated via 
bold-face. For simplicity, the representation does 
not try to preserve the goal-subgoal relationship 
of the task operators. 

In the time prior to the first event shown in 
Figure 5, the two planes have begun to fly in a 
racetrack configuration. The portion of behavior 
we are interested in begins when the lead notices 
the bogey (1), and must communicate the relevant 
information to its wing. The report-contact oper- 
ator (2) posts a communicative goal on the Top 
state indicating that the agent wants to say some- 
thing. Interleaving begins (somewhat unevenly 
due to the random control scheme) at (3). First, 
three task operators are executed in which the 
agent determines that the bogey is in fact a ban- 
dit, decides to check whether the commit criteria 
have been satisfied (they have not), and notices 
that the bandit is within missile range. Then, at 
(4), language operators begin to compose the mes- 
sage according to communication doctrine. The 
first step in any lead-wing communication is the 

parate knowledge sources into the top-level operators 
discussed in Section 3.1. It is this highly compiled 
form of language knowledge that models an experi- 
enced pilot and provides real-time language behavior 
on-line. 
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Figure 7: Figure 6 continued: completion of summons generation 

exchange of callsigns, here, the sentence Parrotl02 
this is ParrotlOl. This is a domain-dependent in- 
stance of the more general class of utterances we 
call summons (for example the telephone exchange 
John? It's Jill.) The summons is constructed 
piece by piece using top-level generation operators 
(in boldface). Figure 5 shows this linguistic pro- 
cess interleaved with operators that contribute to 
situation awareness (5) and operators that fly the 
plane (6), (7), and (8). 

Figure 6 continues the timeline for ParrotlOl 
and introduces Parrotl02 at the point just be- 
fore the first word of the summons arrives into the 
agent's input buffer. The timelines are aligned by 
the linguistic output of ParrotlOl and the linguis- 
tic input of Parrotl02. 

To this point in the scenario, the wing has sim- 
ply been flying a racetrack with the lead. At (9) 
ParrotlOl outputs the wing's callsign in the upper 
timeline. Note that this is done even though the 
construction of the remainder of the summons is 
still being interleaved with non-linguistic subtasks 
(10) through (12); both generation and compre- 
hension are incremental. Meanwhile, shortly af- 
ter Parrot 102 has begun to turn (13), the call- 
sign is heard (14). The lower timeline continues 
with comprehension of the first few words of the 
summons ((16) and (18)) interleaved with oper- 
ators that keep the wing in formation ((15) and 
(17)). Note that the s- and u-constructors for the 
word this (18) fire after the word is has already 
been heard. This is partly because the lead's mes- 
sage is coming out quickly, and partly because the 
wing's attention has been focused on flying the 
plane. The input buffer that holds unattended 
speech has a decay rate; as in people, if speech 

goes unattended long enough (as it may if the pi- 
lot is in a stressful situation), it simply disappears 
from the buffer. 

Figure 7 continues the interchange to the point 
that ParrotlOl outputs the final word of the sum- 
mons (19). There is no interleaving in this por- 
tion of the trace because both pilots are simply 
flying the long leg of the racetrack where no task 
operators are proposed. Notice that by the time 
the lead has begun the second portion of the sum- 
mons, the wing has caught up on the comprehen- 
sion side (19). The rapidity with which I have 
a contact emerges, however, once again results in 
buffered input for Parrotl02 (21). Thus, linguis- 
tic processing continues in the wing agent after 
the lead has already begun to wait for a reply (not 
shown). As a final observation, note that the same 
u-constructor that processes ParrotlOl in Figure 6 
also processes I'm Figure 7 (u-constructor2). This 
is an example of where the granularity of the top- 
level operators affords some transfer of syntactic 
processing despite the difference in semantics (s- 
constructor6 vs. s-construct26). 

5    Conclusions 

The ability to communicate in natural language 
can be a key capability contributing to an IFOR's 
performance in both simulation and training exer- 
cises. In this paper we have discussed how the de- 
sign of NL-Soar uses linear complexity, interrupt- 
ibility, and atomaticity of language processing to 
provide a language capability that does not com- 
promise reactivity. What we have not discussed, 
however, is the third area of interest identified in 
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[Rubinoff and Lehman, 1994a]: performance in ac- 
cordance with empirical data from pilots in real- 
life simulations. Our continued work, therefore, 
will focus on making the NL-Soar integration more 
robust, including handling linguistic constructions 
specific to the domain and allowing for the inter- 
ruptions and self-corrections that necessarily come 
with real language use. 
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The clever combatant looks to the effect 
of combined energy, and does not require 
too much from individuals. 

Sun Tzu The Art of War 

1. Abstract 

The effectiveness of intelligent computer gener- 
ated forces is limited by their ability to closely 
coordinate their actions within the overall battle- 
field situation. We have developed intelligent com- 
mand and control agents which monitor large sec- 
tions of the battlefield and deploy other forces for 
increased effectiveness. These agents have been 
demonstrated in the air to air, close air support, 
and air strike domains. 

2. Introduction 

Our goal is the development of intelligent forces 
(IFOR's), computer agents which are functionally 
indistinguishable from human agents in their abil- 
ity to,interact with the synthetic environment. 
The Soar/IFOR consortium, involving the Uni- 
versity of Michigan, Information Sciences Insti- 
tute of the University of Southern California, and 
Carnegie Melon University, is developing IFORs 
for all military air missions: air to air, air to 
ground, air supply, anti-armor attack, etc. IFORs 
must have many capabilities to be successful" in- 
cluding: extensive knowledge, real-time reactiv- 
ity, goal-directed problem solving, and planning. 
Additionally, they must coordinate their activities 
with other friendly forces (Laird et al., 1995a). 

To fully support very large scale battle field sim- 
ulations, such as those envisioned for STOW-97, 
intelligent computer generated forces cannot act 
independently; but rather, they must coordinate 
their efforts for increased effect just as humans 

do. This requires a means and a method for co- 
ordination, the ability to convey coordination in- 
formation, and the ability for large scale situation 
assessment. In military parlance this is commonly 
referred to as command, control, communications, 
and intelligence (C3I ). 

This paper discusses our current state of develop- 
ment of intelligent, realistic C3I agents for simu- 
lation in the air domain. These agents have been 
implemented using ModSAF (Calder et al, 1993) 
and the Soar/ModSAF interface (Schwamb et al, 
1994). 

The remainder of this introductory section pro- 
vides an overview of the C3I domain and some 
motivation for this work. Section 3 has a descrip- 
tion of the C3I agents implemented by this project 
to date. Section 4 discusses the general responsi- 
bilities of each agent and goes on to show how our 
agents demonstrate each of the C3! functions. Sec- 
tion 5 provides an extended example of the inter- 
action between multiple C3I agents and. a section 
of planes flying close air support. Section 6 dis- 
cusses research and open problems. Finally, sec- 
tion 7 provides general discussion and conclusions. 

2.1. Domain Overview 

Previous work in computer generated forces has 
either focused on individual agents working in rel- 
ative isolation or groups of agents which may be 
treated as a whole (Rao et al., 1994). A notable 
exception is (Ballas et al., in press). These ap- 
proaches avoid the problems of C3I by allowing 
human guidance, but when the agents number in 
the tens of thousands, finding enough people to 
control them is infeasible. 

In 1994, the Soar/IFOR project was tasked to pro- 
vide automated pilots for all air vehicles and mis- 
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sions in support of STOW-97. (See (Laird et al., 
1995b) for an overview of the current state of this 
project.) In order to accomplish this task we 
needed to extend the scope of the project to in- 
clude those interactions necessary between pilots 
and controllers, even if they are not airborne. For 
example, orange agents are at a severe'disadvan- 
tage if they cannot rely on ground based radar 
control (GCI) to track threats outside the limited 
scope of their own radar. 

The most C3I intensive missions we have imple- 
mented to date are air to air combat and close 
air support (CAS). In the air to air domain, the 
controller may be responsible for maintaining a de- 
fensive perimeter around the carrier battle group, 
locating potential threats, confirming that an un- 
known aircraft is a threat, providing timely up- 
dates until friendly planes have radar contact, 
then issuing additional information in response to 
queries. 

While air to air combat has a single (or small 
number of) controllers, in contrast, the close 
air support domain demonstrates a wide variety 
of controllers. In the CAS domain, the attack 
planes must have detailed integration with multi- 
ple agents because of close proximity between tar- 
gets and friendly forces. These controllers commu- 
nicate with the planes (locating targets and decon- 
flicting) as well as amongst themselves (requesting 
missions and allocating forces.) 

2.2. Motivation 

The primary motivation for doing this work is to 
develop realistic C3I agents. The IFOR C3I agents 
should be indistinguishable from human agents 
performing similar functions. This involves be- 
lievable interacts with the simulator as well as 
interactions with other agents and humans at a 
natural level. By basing IFOR agents on Soar, a 
theory of cognition (Laird & Rosenbloom, 1994; 
Laird et al, 1987; Newell, 1987), and modeling 
not only the externally observable behavior, but 
plausible thought processes which are necessary to 
produce realistic behavior, we intend to overcome 
both dumb, canned responses and implausible, su- 
perhuman responses. 

The second motivation for doing this work is ef- 
fectiveness. Without C3I agents our automated 
pilots have only limited ability to sense and in- 
teract with their environment. Enemy agents can 

sneak up behind them or fly around them. In addi- 
tion the automated pilots have only limited ability 
to change their mission. Without the large scale 
perspective provided by the controller, they don't 
even realize that there might be a need to change 
their mission. 

Adding C3I can increase the level and types of 
applications for military simulation. As battle- 
field simulators become more realistic, we want 
to make them available for more advanced pur- 
poses. The major use of air simulators to date is 
in pilot training. By providing intermediate level 
controllers, we expect to make simulation usable 
not only in pilot training, but also in training hu- 
man controllers to interact with and control these 
controllers. 

Finally, we wish to study human cognition and 
the ability to model it in Soar. C3I provides a 
new domain for this research which suggests more 
knowledge and exhibits different types of knowl- 
edge than that used by aircraft pilots. 

3. C3I Agents 

In order to increase realism and promote playa- 
bility at various levels, we base C3I on existing 
techniques currently in use by military organiza- 
tions and embody them in specialized agents cor- 
responding to military controllers. Thus there is 
a direct one to one mapping between our agents 
and humans. 

Currently, we have operational versions of the fol- 
lowing C31 agents: 

• Air Intercept Controller (AIC) which assigns 
planes to stations, spots threats, and provides 
information about enemy planes. The AIC 
is airborne, situated in a plane with a large 
radar, such as an E-2C. 

• Ground Controlled Intercept (GCI) performs 
the same sort of mission as an AIC but is 
ground based and immovable. 

• Forward Air Controller (FAC) which locates 
targets and provides final directions for close 
air support. Forward air controllers may be 
either ground based or airborne (FAC(A)). 

• Direct Air Support Center (DASC) which as- 
signs aircraft to missions, potentially alters 
the missions, and hands off attack missions 
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to the FAC. The DASC is ship based, usually 
on the aircraft carrier. 

• Tactical Air Direction Controller (TAD) di- 
rects air operations within the Amphibious 
Operations Area (AOA) prior to the estab- 
lishment of a DASC. The TAD is also ship 
based and may be co-located with the DASC. 

• Fire Support Coordination Center (FSCC) 
determines the type of support to utilize 
(CAS, artillery, naval gunfire). If CAS 
is determined it generates a Joint Tactical 
Airstrike Request and coordinates CAS re- 
quests with the DASC. The FSCC is ground 
based within the AOA. 

• Tactical Air Command Center (TACC) which 
provides air traffic control, routing, and de- 
confliction within the AOA. The TACC is 
ground based and usually co-located with the 
FSCC. 

In the following section we explore how agents 
demonstrate the capabilities necessary for coordi- 
nating the behaviors of multiple agents. 

4. Responsibilities 

In addition to the specific responsibilities of each 
agent given above there are several general re- 
sponsibilities associated with C3I agents. These 
responsibilities are broken out into separate top- 
ics, but it must be realized that to work effectively 
all of these activities must be going on simultane- 
ously. 

4.1. Command 

C3I agents are responsible for mission initiation 
as well as tracking and modifying the mission as 
it develops. Typically the planes will have a pre- 
briefed mission, but often this mission will need 
to be changed or replaced entirely as the battle- 
field situation developed. Our command agents 
can change almost every aspect of a mission in- 
cluding assignment of individual CAP1 stations, 
routes, target times, and the final targets. 

In order to effectively carry out their command 
function, C3I agents need to have a command 
organization. We've observed two different com- 
mand organizations for C3I agents. 

1 Combat Air Patrol 

In the air to air domain command is centralized. 
Either the AIC or the GCI are responsible for all 
air traffic. These agents provide continuous con- 
trol and information for many sections of planes. 
Though there may be multiple controllers acting 
at the same time they have clearly separated du- 
ties, and there is very little interaction. 

In contrast, in the CAS domain command is de- 
centralized. As the planes fly through different 
regions they are directed by multiple controllers, 
all of which are responsible for the ultimate suc- 
cess of the mission. Though there is still a chain 
of command, because of limited numbers of radios 
and limited broadcast range the planes may not be 
in continuous contact with any single controller. 

The controllers in CAS need to coordinate not 
only the planes, but also themselves. The TACC, 
DASC, FSCC, and FAC have to form a distributed 
control network in which mission requests and as- 
signments are propagated through the network. 

4.2. Control 

The mission of a controller is to continually assess 
the situation then allocate, or re-allocate, forces 
for maximum effect. 

The combined knowledge of overall mission ob- 
jectives and threat detection makes controllers 
uniquely capable of resource allocation. They 
need to assess the resources available and when 
future resources might become available, balanced 
against current and potential threats. They must 
synchronize their own forces, and their efforts with 
respect to other controllers. Higher level con- 
trollers have to trade off the utility of multiple 
potential assignments for maximal effectiveness, 
while low level controllers can only shout louder 
hoping to increase the priority of their request for 
resource allocation. 

Poorly coordinated attacks can be weak and in- 
effective. One way C3I agents coordinate is by 
synchronizing attacks through timing constraints. 
For example, in the CAS domain, when bombing 
in tight proximity to friendly troops, timings must 
be accurate to plus or minus ten seconds to avoid 
interference with friendly troops. 

To accomplish this C3I agents must be capable of 
real-time reactive planning. Both threats, friendly 
forces, and messages from other controllers may 
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arrive at any time. The overall battle plan must be 
incrementally supplemented with new information 
so that we seize opportunities and knowingly avoid 
or confront risks. 

Soar provides several capabilities which help man- 
age these real-time asynchronous inputs. First, 
the decision of what to do next is handled through 
production rules. During each decision cycle all 
relevant rules are tested and allowed to fire in par- 
allel. Thus the sequence of execution is not fixed. 

The real-time is requirement handled by making 
the speed of operator execution comparable to 
experimental results in humans (Newell, 1990). 
Since this can only guarantee soft real-time, our 
agents will react quickly, but may fail to react 
quickly enough when faced with overly complex 
situations, just as people do. Limiting the number 
of available choices increases the speed of decision 
making. Soar uses operator subgoaling to provide 
a context for focusing decisions on information rel- 
evant to the current situation. For example, when 
under attack and bugging out an E-2 might not 
be overly concerned with planning the course to 
its CAP station. 
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Figure 1: Nine/twelve line brief 

Another way to increase military effectiveness is 
to decrease the interference from one's own forces. 
In actual combat (as opposed to simulation) this 
will have serious morale consequences. The de- 
confliction duties we've implemented range from 
air traffic control to route planning to explicitly 
informing the plane of the location friendly forces. 

4.3. Communication 

The nature of communication is that commands 
must be brief, and commands must be clear. C3I 
agents must communicate relevant information in 
a timely and effective manner. Communication 
can range from simple (e.g., "proceed as briefed" 
or "negative") to very complex, such as a nine line 
brief shown in figure 1. 

The domain of military communication is well re- 
searched, and the military jargon provides a form 
of communication which is brief yet maximizes 
the communication of necessary knowledge with- 
out undue overhead. We attempt to model C3I us- 
ing standardized forms, realistic dialog from actual 
communications of former pilots, and examples 
from training manuals whenever possible. We be- 
lieve that by making communication explicit and 

based on human communication we can offer an 
approach to better human interaction and easier 
evaluation of the results of a simulation. 

The approach used by the military, and the ap- 
proach we've adopted, is to use a shared format 
for all communication. Complex commands use 
a standard template to reduce transmission time 
and ensure all relevant information has been com- 
municated. 

To compensate for lost messages and electronic in- 
terference we repeat messages until confirmation 
is forthcoming . The receipt of commands must 
be confirmed through "roger," or if some action 
is necessary, by the recipient either "wilco" (will 
comply) or "negative" (will not comply). 

While we have yet to incorporate a general nat- 
ural language understanding system with TacAir- 
Soar, the commands used are based on the actual 
English communications used between controllers 
and pilots in similar situations. This makes it eas- 
ier to understand the behavior of the IFOR com- 
manders, and allows human communication with 
the IFOR commanders. In order to communicate 
with other CGFs we will be adopting CCSIL pro- 
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tocols (Salisbury, 1995). 

4.4. Intelligence 

The most important responsibility of an air con- 
troller is to locate, identify, and track threats. 
"Timely interception is totally dependent of two 
factors: early detection and positive identifica- 
tion" (Gunston & Spick, 1983). The need to track 
the threat arises because enemy agents are emi- 
nently uncooperative. Some early failures of our 
fighter agents acting alone arose because human 
pilots would feign an attack from one direction, 
then beam or drop and attack from a different di- 
rection. The more powerful radar capabilities of 
the AIC and GCI makes our agents less vulnerable 
to these tactics. 

Each agent has limited capability. Controllers are 
limited by weapons,2 maneuverability, and speed 
when compared with the targets they must defend 
against. To compensate for this lack of ability 
they provide greater situational awareness either 
through proximity (e.g., a FAC) or superior equip- 
ment (such as an E-2's radar). They must use 
this awareness to perform continuous intelligence 
gathering. Without this information even a vet- 
eran pilot may be defeated by a poorly equipped 
pilot of lesser training. 

5. Example scenario 

Figures 2 through 8 illustrate some of the interac- 
tion between command agents and combat aircraft 
during a close-air support mission. All of this di- 
alog is taken from a simulation run of a close air 
support mission. 

Our agents include a section of F-14d fighters 
(lead by Falconl4), a TACC (Icepack), an FSCC 
(Bronco), a DASC (Mustang) and a FAC (Rat- 
tler). Each utterance is preceded by the name of 
the speaker and the radio frequency used for this 
communication. The frequencies are color coded 
to match the encryption scheme used in the com- 
munication. 

In figure 2 the two planes check into the amphibi- 
ous operations area (AOA) with Icepack. The ex- 
act form of the plane's initial check-in message is 
specified in the SPINs (SPecial INstructions) and 
may vary across scenarios, but will convey the es- 

Falconl4 (white) 
Icepack (white): 
Falconl4 (white) 
Falconl4 (white) 
Falconl4 (white) 
Falconl4 (white) 
Falconl4 (white) 
Falconl4 (white) 
Icepack (white): 
Icepack (white): 
Icepack (white): 
Icepack (white): 
Icepack (white): 
Icepack (white): 
Icepack (white): 
Icepack (white): 
Icepack (white): 
Falconl4 (white): 

:  Icepack this-is Falconl4 
go-ahead 

: Falconl4 
: mission-number 20-059 
: proceeding-to Elmer 
:  angels 32 
: time-on-station 1+30 
: checking-in-as fragged 
roger 
Falconl4 
radar-contact 
cleared-to-enter-aoa 
proceed-as-briefed 
maintain angels 32 
check-in-with Mustang 
on orange 
at Tiger 

: wilco 

2Tliough, at least one E-2 pilot considers every friendly 
plane in the sky his weapon. 

Figure 2: Mission checks in to AOA 

sential information 1) who I am, 2) where I am, 
and 3) what am I doing here. 

Icepack recognizes this message and realizes that 
they are both friendly and supposed to be there. 
Icepack locates their corresponding blip on radar, 
gives them permission to enter the AOA, and does 
not change their mission. 

Our TACC is capable of some low level air traffic 
control. In this case it consists of assigning unique, 
even altitudes to inbound flights, while outbound 
flights are expected to maintain odd altitudes. 

Finally, Icepack hands off control to the next 
agent, Mustang, at a pre-briefed radio setting. 

Rattler (silver): Bronco this-is Rattler 
Rattler (silver):  immediate-mission 
Rattler (silver): target-is tank 
Rattler (silver): target-location-is 
Rattler (silver): x 127000 
Rattler (silver): y 27500 
Rattler (silver): target-time ASAP 
Rattler (silver):  desired-results destroy 
Rattler (silver): final-control FAC Rattler 
Rattler (silver): on green 
Bronco (silver): roger Rattler 

Figure 3: FAC sends tactical air request to FSCC 
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In figure 3 Rattler finds itself in the line of un- 
friendly fire and radios back to the FSCC that it 
needs support immediately. In addition it provides 
information sufficient for the FSCC to initiate a 
Joint Tactical Airstrike Request (JTAR).3 

The JTAR includes target type, location, time, 
and desired results. Note that Rattler has elected 
to be the forward air controller for the mission 
and direct the final bombing run. The FSCC sup- 
plements this information with coordination and 
mission data. 

Bronco (orange): Mustang this-is Bronco 
Bronco (orange): request-number 28-59 
Bronco (orange): immediate-mission 
Bronco (orange): target-is tank 
Bronco (orange): target-location-is 
Bronco (orange): x 127000 
Bronco (orange): y 27500 
Bronco (orange): target-time ASAP 
Bronco (orange): desired-results destroy 
Bronco (orange): final-control FAC Rattler 
Bronco (orange): on green 
Mustang (orange): roger 

Figure 4: FSCC radios DASC 

In figure 4 Bronco (the FSCC) has determined 
that close air support is the logical response, 
and transmits the necessary information from the 
JTAR to Mustang (the DASC). If this were more 
realistic, the request would be transmitted in hard 
copy form rather than over the radio, but we are 
constrained with the information exchanges allow- 
able through ModSAF. 

In figure 5 the lead plane is approaching a holding 
point and checks in with Mustang. The plane's 
check in sequence has the same form as seen in 
figure 2. 

At this stage Mustang alters the mission from its 
pre-specified course. Even though the planes have 
a pre-briefed mission, Mustang determines that 
the new mission is more important and redirects 
the flight to a new contact point (Chevy) and a 
new controller (Rattler) for further details. 

Falconi4 (orange) 
Mustang (orange): 
Falconi4 (orange) 
Falconl4 (orange) 
Falconl4 (orange) 
Falconl4 (orange) 
Falconl4 (orange) 
Falconl4 (orange) 
Mustang (orange): 
Mustang (orange): 
Mustang (orange): 
Mustang (orange): 
Falconl4 (orange) 

:  this-is Falconl4 
go-ahead 

: Falconl4 
: mission-number 20-059 
: proceeding-to Tiger 
: angels 32 
: time-on-station 1+30 
: checking-in-as fragged 
Falconl4 this-is Mustang 
proceed-as-briefed 
check-in-with Rattler 
on green at Chevy 

: wilco 

3 We've elected not to include an example of a Joint 
Tactical Airstrike Request because of its detailed nature. 
The nine/twelve line brief of figure 1 accounts for less than 
one sixth of its content by size. 

Figure 5: Mission checks in with DASC 

Mustang (green): Rattler this-is Mustang 
Rattler (green): go-ahead 
Mustang (green): expect-cas-mission 20-059 
Mustang (green): call-sign Falconl4 
Mustang (green): at Chevy 
Rattler (green): roger 

Figure 6: DASC contacts FAC 

Figure 6 shows Mustang informing Rattler that 
help is on the way, who they are, and where to 
expect them. Rattler has no radar and will as- 
sume a plane approaching from that direction is 
the expected mission. 

In figure 7 the planes finally arrive at the contact 
point for Rattler and check in according to the 
format seen in figure 2. 

Figure 8 shows Rattler delivering a nine line brief 
similar to that shown in figure 1. This is an in- 
formation intensive message which relies on the 
controller and pilot sharing a common communi- 
cation model. All and only the necessary values 
are given sequentially without reference to mean- 
ing or line numbers. 

What's being expressed here is that the initial 
point will be Joyce. The heading, in magnetic 
degrees, from the initial point to the target is 052. 
The distance from the initial point to the target 
is 18.6 nautical miles. The target's elevation is 0 
above mean sea level. The target's description is 
a "tank". The target's coordinates are 127000 by 
27500 in the X/Y coordinate system of ModSAF. 
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Falconl4 (green): Rattler this-is Falconl4 
Rattler (green): go-ahead 
Falconl4 (green): Falconl4 
Falconl4 (green): mission-number 20-059 
Falconl4 (green): 2 F-14d 
Falconl4 (green): holding-at Chevy 
Falconl4 (green): angels 32 
Falconl4 (green): 10 MK82 
Falconl4 (green): time-on-station 1+30 
Falconl4 (green): no-laser-capability 
Rattler (green): roger 
Rattler (green): Falconl4 

Figure 7: Mission check in with FAC 

Rattler (green): 
Rattler (green): 
Falconl4 (green) 
Rattler (green): 
Rattler (green): 
Rattler (green): 
Rattler (green): 
Rattler (green): 
Rattler (green): 
Rattler (green): 
Rattler (green): 
Rattler (green): 
Rattler (green): 
Falconl4 (green) 

standing-by 
with-9-line-brief 

: ready-to-copy 
Joyce 
052 
18.6 
0 
tank 
x 127000 y 27500 
wp 
sv 8000 meters 
Ford 
tot ASAP 

: ASAP 

Figure 8: FAC gives 9 line brief 

The target will be marked with white phosphor.4 

There are friendlies in the area which are 8000 
meters to the south-west. After the attack the 
plane should egress through Ford. And the attack 
should commence as soon as possible. 

Falconl4 signals that he copies all of that infor- 
mation and agrees to it by repeating the time. 

Following this, there are brief exchanges when the 
planes are spotted, cleared to drop, and for dam- 
age assessment. 

6. Research Issues in C3I 

The development of C3I agents presents several 
interesting research issues. 

From a broader artificial intelligence perspective, 
C3I presents interesting problems in reactive plan- 
ning and managing dynamically changing goals in 
the face of uncertainty. The battle field environ- 
ment is constantly changing. This requires a fast 
and efficient architecture to keep up with the speed 
requirements of the situation as well as a flexible 
architecture for incremental reasoning and reac- 
tive planning. 

Most of the planning currently done by our sys- 
tem is reactive planning. In some situations the 
C3I agents may have some time for decision mak- 
ing and should use this time for more deliberate 
planning. Recent research explores the possibility 
of incorporating planning and means-ends analy- 
sis mechanisms with our agents (van Lent, 1995; 
Wray, 1995). 

This work is very closely related to distributed ar- 
tificial intelligence. Since we are basing our work 
on an existing model which seems to work reason- 
ably well, we can avoid many of the problems of 
distributed artificial intelligence systems. For ex- 
ample, our agents need not carry out protracted 
negotiations. 

We've demonstrated that a template driven ap- 
proach to language understanding provides a suf- 
ficiently flexible command language for many as- 
pects of communication, but it's not clear how far 
this approach can be extended. More work needs 
to be done on natural language understand both 
for agent flexibility and ease of use in human com- 
puter interaction See (Lehman et a/., 1995) for re- 
cent work. 

Though these agents were prepared to take part 
in the STOW-E demonstration, during rehearsal 
they were unable to handle the large number of 
other agents they saw in the world and crashed. 
This turned out to be a buffer overflow problem, 
but suggested several methods for reorganizing the 
way of IFC-R agents handle large numbers of in- 
puts. Currently, these IFOR agents will slow down 
and their performance will degrade as the number 
of other agents they have to consider increases. 

In the immediate future we will address more mun- 
dane, but no less critical tasks of tracking fuel 
states and allocating fuel assets. 

4 The capability for marking a target does not yet exist. 
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7. Discussion 

We have described the current state of devel- 
opment of C3I agents used by Soar/IFOR. We 
have shown how the agents currently implemented 
demonstrate the specific aspects of the C3I do- 
main. Finally, we worked through an example 
which showed multiple control agents interacting 
with planes on a close air support mission. 

We have demonstrated an ability to cope with 
incomplete knowledge and incrementally supple- 
ment information as it becomes available. This 
requires continuous situation assessment: com- 
mands, threats, and resources may arrive at any 
time. 

We believe that automation must be pushed up 
the command hierarchy. As the number of simu- 
lated agents grows, people will have to supervise 
larger numbers of agents. We believe that the best 
way to do this is to emulate the present military 
command hierarchy. This has the advantage of 
ease of use (nothing new to learn), effectiveness 
(it has been proven through centuries of warfare), 
and ease of understanding. 

8. Acknowledgments 

This work was done in close cooperation with John 
E. Laird and Randolph M. Jones. 

Thanks to BMH Associates, Inc. for their tech- 
nical assistance, especially Craig Petersen, Mark 
Checchio, Tom Brandt, and Bob Richards. 

This research was supported at the University of 
Michigan as part of contract N00014-92-K-2015 
from the Advanced Systems Technology Office of 
the Advanced Research Projects Agency and the 
Naval Research Laboratory. 

9. References 

Ballas, J. A. abd McFarlane, D. C, Achille, L. B., 
Stroup, J. L., Heithecker, C. H., k Kushnier, 
S. D. in press. Interfaces for intelligent control 
systems. Tech. rept. NRL Technical Report. 
Washington, D. C: Naval Research Labora- 
tory. 

Calder, R., Smith, J., Courtenmanche, A., Mar, 
J., k Ceranowicz, A. 1993. ModSAF behavior 
simulation and control. In: Proceedings of the 

third conference on computer generated forces 
and behavioral representation. 

Gunston, B., k Spick, M. 1983. Modern air com- 
bat. New York: Crescent Books. 

Laird, J. E., k Rosenbloom, P. S. 1994. The 
evolution of the Soar cognitive architecture. 
Tech. rept. Computer Science and Engineer- 
ing, University of Michigan. To appear in 
Mind Matters, T. Mitchell Editor, 1995. 

Laird, J. E., Newell, A., k Rosenbloom, P. S. 1987. 
Soar: An architecture for general intelligence. 
Artificial intelligence, 33(3). 

Laird, J. E., Jones, R. M., k Nielsen, P. E. 
1995a. Multiagent coordination in distributed 
interactive battlefield simulations. Tech. rept. 
Computer Science and Engineering, Univer- 
sity of Michigan. 

Laird, John E., Johnson, W. Lewis, Jones, Ran- 
dolph M., Koss, Frank, Lehman, Jill F., 
Nielsen, Paul E., Rosenbloom, Paul S., Rubi- 
noff, Robert, Schwamb, Karl, Tambe, Milind, 
Dyke, Julie Van, van Lent, Michael, k Wray, 
Robert. 1995b (May). Simulated intelligent 
forces for air: The Soar/IFOR Project 1995. 
In: Proceedings of the fifth conference on com- 
puter generated forces and behavioral repre- 
sentation. 

Lehman, J. F., Rubinoff, R., k Van Dyke, J. 
1995 (May). Natural language processing for 
IFORs: Comprehension and generation in the 
air combat domain. In: Proceedings of the 
fifth conference on computer generated forces 
and behavioral representation. 

Newell, A. 1987. Unified theories of cognition: 
1987 William James lectures. Available on 
videocassette from Harvard Psychology De- 
partment. 

Newell, A. 1990. Unified theories of cognition. 
Cambridge, MA: Harvard University Press. 

Rao, A., Lucas, A., Selvestrel, M., k Murray, G. 
1994. Agent-oriented architecture for air com- 
bat simulation. Tech. rept. The Australian 
Artificial Intelligence Institute. Techinal Note 
42. 

Salisbury, M. 1995. Command and Control Sim- 
ulation Interface Language (ccsil): Status 
update. In: Proceedings of the the 12th 
distributed interactive simulation workshop. 

49 



Sponsored by STRICOM and the Institute for 
Simulation and Training (1ST) at the Univer- 
sity of Central Florida. 

Schwamb, K. B., Koss, F. V., k Keirsey, D. 1994 
(May). Working with ModSAF: Interfaces 
for programs and users. In: Proceedings of 
the fourth conference on computer generated 
forces and behavioral representation. 

van Lent, M. 1995. Planning and learning in a 
complex domain. Tech. rept. The University 
of Michigan, Department of Electrical Engi- 
neering and Computer Science. 

Wray, R. E. 1995. A general framework for means- 
ends analysis. Tech. rept. The University of 
Michigan, Department of Electrical Engineer- 
ing and Computer Science. 

10. Author's Biography 

Paul E. Nielsen is an assistant research scien- 
tist working on the Intelligent Forces Project at 
the Artificial Intelligence Laboratory of the Uni- 
versity of Michigan. He received his Ph.D. from 
the University of Illinois in 1988. Prior to joining 
the University of Michigan he worked at the GE 
Corporate Research and Development Center. His 
research interests include intelligent agent mod- 
eling, qualitative physics, machine learning, and 
time constrained reasoning. 

50 



Recursive Agent and Agent-group Tracking in 
a Real-time, Dynamic Environment 

Milind Tambe 
Information Sciences Institute and Computer Science Department 

University of Southern California 
4676 Admiralty Way, Marina del Rey, CA 90292 

tambe@isi.edu 
WWW:http://www.isi.edu/soar/tambe 

Abstract 

Agent tracking is an important capability an in- 
telligent agent requires for interacting with other 
agents. It involves monitoring the observable ac- 
tions of other agents as well as inferring their un- 
observed actions or high-level goals and behav- 
iors. This paper focuses on a key challenge for 
agent tracking: recursive tracking of individuals 
or groups of agents. The paper first introduces 
an approach for tracking recursive agent mod- 
els. To tame the resultant growth in the track- 
ing effort and aid real-time performance, the pa- 
per then presents model sharing, an optimization 
that involves sharing the effort of tracking mul- 
tiple models. Such shared models are dynami- 
cally unshared as needed — in effect, a model 
is selectively tracked if it is dissimilar enough to 
require unsharing. The paper also discusses the 
application of recursive modeling in service of de- 
ception, and the impact of sensor imperfections. 
This investigation is based on our on-going effort 
to build intelligent pilot agents for a real-world 
synthetic air-combat environment.1 

1    Introduction 
In dynamic, multi-agent environments, an intelligent 
agent often needs to interact with other agents to 
achieve its goals. Agent tracking is an important re- 
quirement for intelligent interaction. It involves moni- 
toring other agents' observable actions as well as infer- 
ring their unobserved actions or high-level goals, plans 
and behaviors. 

Agent tracking is closely related to plan recogni- 
tion(Kautz & Allen 1986; Azarewicz et al. 1986), 
which involves recognizing agents' plans based on ob- 
servations of their actions. The key difference is that 

1I thank Paul Rosenbloom and Ben Smith for detailed 
feedback on this effort. Thanks also to Lewis Johnson, Pi- 
otr Gmytrasiewicz and the anonymous reviewers for help- 
ful comments. This research was supported under sub- 
contract to the University of Southern California Informa- 
tion Sciences Institute from the University of Michigan, as 
part of contract N00014-92-K-2015 from the Advanced Sys- 
tems Technology Office of the Advanced Research Projects 
Agency and the Naval Research Laboratory. 

plan-recognition efforts typically focus on tracking a 
narrower (plan-based) class of agent behaviors, as seen 
in static, single-agent domains. Agent tracking, in con- 
trast, can involve tracking a broader mix of goal-driven 
and reactive behaviors(Tambe k Rosenbloom 1995). 
This capability is important for dynamic environments 
where agents do not rigidly follow plans. 

This paper focuses on the issues of recursive agent 
and agent-group tracking. Our investigation is based 
on an on-going effort to build intelligent pilot agents for 
simulated air-combat(Tambe et al. 1995). These pilot 
agents execute missions in a simulation environment 
called ModSAF, that is being commercially developed 
for the military(Calder et al. 1993). ModSAF provides 
a synthetic yet real-world setting for studying a broad 
range of challenging issues in agent tracking. By in- 
vestigating agents that are successful at agent tracking 
in this environment, we hope to extract some general 
lessons that could conceivably be applied in other syn- 
thetic or robotic multi-agent environments(Kuniyoshi 
et al. 1994; Bates, Loyall, & Reilly 1992). 

For an illustrative example of agent tracking in the 
air-combat simulation environment, consider the sce- 
nario in Figure 1. The pilot agent L in the light-shaded 
aircraft is engaged in combat with pilot agents D and 
E in the dark-shaded aircraft. Since the aircraft are far 
apart, L can only see its opponents' actions on radar 
(and vice versa). In Figure 1-a, L observes its oppo- 
nents turning their aircraft in a coordinated fashion to 
a collision course heading (i.e., with this heading, they 
will collide with L at the point shown by x). Since the 
collision course maneuver is often used to approach 
one's opponent, L infers that its opponents are aware 
of its (L's) presence, and are trying to get closer to fire 
their missiles. However, L has a missile with a longer 
range, so L reaches its missile range first. L then turns 
its aircraft to point straight at D's aircraft and fires a 
radar-guided missile at D (Figure 1-b). Subsequently, 
L executes a 35° fpole turn away from D's aircraft (Fig- 
ure 1-c), to provide radar guidance to its missile, while 
slowing its rate of approach to enemy aircraft. 

While neither D nor E can observe this missile on 
their radar, they do observe L's pointing turn followed 
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Figure 1: Pilot agents D and E are attacking L. An 
arc on an aircraft's nose shows its turn direction. 

by its fpole turn. They track these to be part of 
L's missile firing behavior, and infer a missile firing. 
Therefore, they attempt to evade this missile by exe- 
cuting a 90" beam turn (Figure 1-d). This causes their 
aircraft to become invisible to L's radar. Deprived 
of radar guidance, L's missile is rendered harmless. 
Meanwhile, L tracks its opponents' coordinated beam 
turn in Figure 1-d, and prepares counter-measures in 
anticipation of the likely loss of its missile and radar 
contact. 

Thus, the pilot agents need to continually engage in 
agent tracking. They need to track their opponents' 
actions, such as turns, and infer unobserved actions 
and high level goals and behaviors, such as the fpole, 
beam or missile firing behaviors. This paper focuses on 
two key issues in agent tracking in this environment: 

• Recursive agent tracking: Pilot agents continually 
influence each other's behaviors, creating a need for 
recursive tracking. For instance, in Figure 1-d, to 
successfully track D's beam, L must also recursively 
track how D is likely to be tracking L's own actions 
— that D is aware of L's missile firing, and it is 
beaming in response. Such recursive tracking may 
also be used in service of deception, and in address- 
ing other agents' realistic sensor (radar) limitations. 

• Agent group tracking: An agent may need to track 
coordinated (or uncoordinated) activities of a group 
of agents, e.g., as just seen, L needed to track two 
coordinated opponents. 

To address these issues, this paper first presents an 
approach for recursive tracking of an individual or a 
groups of agents. This approach builds upon RESC, 
a technique for real-time tracking of flexible and re- 
active behaviors of individual agents in dynamic en- 
vironments. RESC is a real-time, reactive version 
of the model tracing technique used in intelligent tu- 
toring systems — it involves executing a model of 
the tracked agent, and matching predictions with ac- 
tual observations(Anderson et al. 1990; Ward 1991; 
Hill & Johnson 1994). 

Unfortunately, recursive agent-group tracking leads 
to a large growth in the number of models. Executing 
all of these models would be in general highly prob- 

lematic. The problem is particularly severe for a pi- 
lot agent, given that it has to track opponents' ma- 
neuvers and counter them in real-time, e.g., by going 
beam to evade a missile fired at it. Thus, for execut- 
ing recursive models (and for a practical investigation 
of recursive tracking), optimizations for real-time per- 
formance are critical. Previous work on optimizations 
for agent tracking has mostly focused on intra-model 
(within a single model) optimizations, e.g., heuristic 
pruning of irrelevant operators(Ward 1991) restricted 
backtrack search(Tambe & Rosenbloom 1995), and ab- 
str action (Hill & Johnson 1994). In contrast, this pa- 
per proposes inter-model (across multiple models) op- 
timizations. It introduces an inter-model optimization 
called model sharing, which involves sharing the effort 
of tracking multiple models. Shared models are dy- 
namically unshared when required. In essence, a model 
is selectively tracked if it is dissimilar enough to war- 
rant unsharing. The paper subsequently discusses the 
application of recursive models in service of deception. 
This analysis is followed up with some* supportive ex- 
periments. 

The descriptions in this paper assume the perspec- 
tive of the automated pilot agent L, as it tracks its 
opponents. They also assume ideal sensor conditions, 
where agents can perfectly sense each others' maneu- 
vers, unless otherwise mentioned. Furthermore, the de- 
scriptions are provided in concrete terms using imple- 
mentations of a pilot agent in a system called TacAir- 
Soar(Tambe et al. 1995), built using the Soar archi- 
tecture(Newell 1990; Rosenbloom et al. 1991). We 
assume some familiarity with Soar's problem-solving 
model, which involves applying operators to states to 
reach a desired state. 

2    Recursive Agent Tracking 
One key idea in RESC is the uniform treatment of 
an agent's generation of its own behavior and tracking 
of other agent's behaviors. As a result, the combi- 
nation of architectural features that enable an agent 
to generate flexible goal-driven and reactive behaviors 
are reused for tracking others' flexible and reactive be- 
haviors. This uniformity is extended in this section in 
service of recursive agent tracking. 

To illustrate this idea, we first describe L's genera- 
tion of its own behaviors, using the situation in Figure 
1-d, just before the agents lose radar contact with each 
other. Figure 2-a illustrates L's operator hierarchy 
when executing its fpole. Here, at the top-most level, L 
is executing its mission — to defend against intruders 
— via the execute-mission operator. Since the termi- 
nation condition of this operator — completion of L's 
mission — is not yet achieved, a subgoal is generated.2 

2If an. operator's termination conditions remain unsatis- 
fied, a subgoal gets created. If these termination conditions 
are satisfied by future state changes, then the operator and 
all its subgoals are terminated. 
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Different operators are available in this subgoal, such 
as follow-flighi-path, intercept, and run-away. L selects 
the intercept operator to combat its opponent D. In 
service of intercept, L applies the employ-missile op- 
erator in the next subgoal. Since a missile has been 
fired, the fpole operator is selected in the next sub- 
goal to guide the missile with radar. In the final sub- 
goal maintain-heading is applied, causing L to main- 
tain heading (Figure 1-d). All these operators, used for 
generating L's own actions, will be denoted with the 
subscript L, e.g., fpolt^. Operator^ will denote an 
arbitrary operator of L. Statej^ will denote the global 
state shared by all these operators. Together, statej^ 
and the operator^ hierarchy constitute L's model of 
its present dynamic self, referred to as modelj^. 

Opentor Hjcmchy <*«*»„ Hkmby Opa""JIt, Ifcuirtjr 

1  EXECUTE-MISSION   \ 1 EXECUIE-WSStON  1 

1 
1  EXECUTE-MISSION   1 

1 
|         INTERCEPT         | INTERCEPT |         INTERCEPT         | 

,                 ^                 - 1 I 
|  EUPior-iassaE  | |             EVADE             | |    EMPLOY-MISSILE    | 

1 1 ' 
|             FPOLE            | 1        BEAM-RIGHT       1 |             FPOLE             | 
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Figure 2: (a) Modelj,; (b) Model^jj; (c) Model^m,. 

Modelj^ supports L's flexible/reactive behaviors, 
given Soar's architectural apparatus for operator se- 
lection and termination(Rosenbloom et al. 1991). L 
reuses this apparatus in tracking its opponents' be- 
haviors. Thus, L uses a hierarchy such as the one in 
Figure 2-b to track D's behaviors. Here, the hierarchy 
represents L's model of D 's current operators in the sit- 
uation in Figure 1-d. These operators are denoted with 
the subscript LD. This operator^ hierarchy, and the 
stateTj) that goes with it, constitute L's model of D or 
modelj,jj. ModelTT) obviously cannot and does not 
directly influence Ers actual behavior, it only tracks 
D's behavior. For instance, in the final subgoal, L 
applies the start-&-maintain-tvrnTjy operator, which 
does not cause D to turn. Instead, this operator pre- 
dicts D's action and matches the prediction with D's 
actual action. Thus, if D starts turning right towards 
beam, then there is a match with model^n — I» be- 
lieves that D is turning right to beam and evade its 
missile, as indicated by other higher-level operators in 
the operator^D hierarchy. Note that, in reality, from 
L's perspective, there is some ambiguity in D's right 
turn in Figure 1-d — it could be part of a big 150° 
turn to run away given L's missile firing. To resolve 
such ambiguity, L adopts several techniques, such as 
assuming the worst-case hypothesis about its enemy, 
which in this case is that D is beaming rather than 

running away. We will not discuss RESC's ambigu- 
ity resolution any further in this paper (see (Tambe & 
Rosenbloom 1995) for more details). 

Thus, with the RESC approach, L tracks D's be- 
haviors by continuously executing the operator^j) hi- 
erarchy, and matching it against D's actions. To 
recursively track its own actions from D's perspec- 
tive, L may apply the same technique to its recursive 
modelLjjT (L's model of D's model of L) as shown 
in Figure 2-c. Modelj^j^ consists of an operatorjjjr 
hierarchy and statej^^. The important point here is 
the uniform treatment of the operatorj^j- hierarchy 
— on par with operatorr j) and operatorr nierarchies 
— to support the tracking of flexible andreactive be- 
haviors. L tracks modelj^j)^ by matching predictions 
with its own actions. Further recursive nesting leads 
to the tracking of modelj^m and so on. To track 
additional opponents, e.g., the second opponent E, L 
tracks additional models, such as modeljjp. L may 
also track modeljjjjL, modeljjgj), modelj^Djj etc for 
recursive tracking. 

Recursive tracking is key to tracking other agents' 
behaviors in interactive situations. Thus, it is L's re- 
cursive tracking of fpolejjj^T which indicates a mis- 
sile firing to modelj^jj, and causes the selection of 
evade-missilerj) to track D's missile evasion. Note 
that in Figure 2-c, ambiguity resolution in modeljTjT 
leads to an operatorj^T hierarchy that is identical 
to the operator^ hierarchy. One key ambiguity reso- 
lution strategy is again the worst-case assumption — 
given ideal sensor situations, L assumes D can accu- 
rately track L's behaviors. Thus, among possible op- 
tions in the operatorjjjjj- hierarchy, the one identical 
to operator^ gets selected. However, these hierarchies 
may not always be identical and the differences be- 
tween them may be exploited in service of deception 
at least in adversarial situations. These possibilities 
are discussed in more detail in Section 5.1. 

3    Executing Models in Real-time 
Unfortunately, the recursive tracking" scheme intro- 
duced in the previous section points to an exponential 
growth in the number of models to be executed. In 
general, for JV opponents, and r levels of nesting (mea- 
sured with r = 1 for model^, r = 2 for modeljjj, 
and so on), the pilot agent L may need to execute: 
YAZI N* models (which is r for N = 1, but $f* for 
N > 1). This is clearly problematic given the likely 
scale-up in N. In particular, given its limited computa- 
tional resources, L may be unable to execute relevant 
operators from all its models in real-time, jeopardizing 
its survival. In fact, as seen in Section 6, L may run 
into resource contention problems while executing just 
five models — indicating possible difficulties even for 
small N and r. 

Thus, optimizations involving some form of selec- 
tive tracking appear necessary for real-time execution 
of these models. Yet, such selectivity should not cause 
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an agent to be completely ignorant of critical informa- 
tion that a model may provide (e.g., an agent should 
not be ignorant of an opponent's missile firing). To 
this end, this paper focuses on an optimization called 
model sharing. The overall motivation is that if there 
is a modely that is near-identical to a modelx, then 
modely's states and operators can be shared with those 
of modelx- Thus, modely is tracked via the execution 
of modelx, reducing the tracking effort in half. Modely 
may be dynamically unshared from modelx if it grows 
significantly dissimilar. Thus, a model is selectively 
executed based on its dissimilarity with other models. 

For an illustration of this optimization, consider 
modely and modelj^jjjj, as shown in Figure 2. 
The operator^!)]- hierarchy can be shared with the 
operatorT hierarchy since the two are identical. (In 
low-level implementation terms, sharing an operator^ 
involves adding a pointer indicating it is also a part of 
modeln}!,). Furthermore, information in statejjjj, 
is shared with statej,. Thus, L essentially executes 
operators from only one model, instead of two. 

Given the efficiency benefits from sharing, it is often 
useful to abstract away from some of the differences 
between models in order to enable sharing. However, 
such abstraction may not be possible for some static 
and/or dynamic aspects of the models. One important 
aspect relates to private information. In particular, in 
their unshared incarnations, models have their indices 
organized so as to prevent a breach of privacy, e.g., 
modelj^jj can access information in modelj^jjj^, but 
not modely. Model sharing could potentially breach 
such privacy. Thus, for instance, if stateT maintains 
secret missile information, sharing it with statej^j, 
would allow modelj-j) to access that secret. To pre- 
vent model sharing from breaching such privacy, some 
aspects of the shared models may be explicitly main- 
tained in an unshared fashion. Thus, if L's missile 
range is (a secret) 30 miles, but L believes D believes 
it is 50 miles, then the missile range is maintained sepa- 
rately on statej^ and staterjjjj. Figure 3 shows the re- 
sulting shared models with an unshared missile range. 

Such sharing among models is related to the shar- 
ing of belief spaces in the SNePS belief representation 
system(Shapiro & Rapaport 1991). One key difference 
is dynamic model unsharing. In particular, while some 
of aspects of the models are static (e.g., the statically 
unshared missile ranges above), other aspects, partic- 
ularly those relating to operators, are highly dynamic. 
As a result, shared components may need to be dy- 
namically unshared when dissimilar. Ideally, any two 
models could be merged (shared) when they are near- 
identical, and dynamically unshared in case of differ- 
ences. This would be ideal selectivity — a model is 
tracked if it requires unsharing. However, in practice, 
both unsharing and merging may involve overheads. 
Thus, if an agent greedily attempts to share any two 
models whenever they appear near-identical, it could 
face very heavy overheads.   Instead, it has to selec- 
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Figure 3: Sharing modely with model^u^. 

tively share two models over a time period A so that 
the savings from sharing outweigh the cost of dynamic 
unsharing and re-merging during A. In particular, sup- 
pose there are two models, modelx and modely that 
are unshared over n sub-intervals $i, #2, ...,£n of A, 
but shared during the rest of A. Further, suppose 
costj(.M) is the cost of executing a model M. over a 
time interval 6; cost(unshare) and cost(merge) are the 
overheads of unsharing and merging respectively; and 
cost« (detect) is thexost incurred during 6 of deciding 
if shared models need to be unshared or if unshared 
models can be merged (this may potentially involve 
comparing two different models and deciding if shar- 
ing is cost-effective). Then, in sharing modely with 
modelx during A, benefits outweight costs iff: 

cost ^(modely)—3^.*,  eosti(modely)> 
nxcost(unsharc)+nxco*t(merge)+cost ^(detect) (1) 

While, ideally, agents may themselves evaluate this 
equation, our agents are unable to do so at present. 
Therefore, candidate categories of models — with high 
likelihood of sharing benefits outweighing costs — are 
supplied by hand. Nonetheless, agents do determine 
specific models within these categories that may be 
shared, and implement the actual sharing and dynamic 
unsharing. The categories are: 

1. Models of distinct agents at the recursive depth of 
r = 2: If a group of agents, say D and E, together 
attack L, modelirjj and modely JJ may be possibly 
shared. Thus, if all models of its N opponents are 
shared, L may need track only, one model at r = 2; 
if not shared, L may track N models at r = 2. 

2. Recursive models of a single agent at r > 3: For in- 
stance, modelyj)L and model^g]^ may be shared 
with modely. Similarly, modelmjj may be shared 
with modelrjj or model^rjTJJ, etc. Models at re- 
cursive depth r > 3 may all t>e shared with models 
at r = 1 or 2. If all such models are shared, L may 
need to track no models at r > 3. 

The end result is that an agent L may track a group 
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of N agents (with sharable models) with just two mod- 
els — modelj^ at r = 1, and one model at r = 2, and 
the rest are all shared — instead of 0(Nr) models. If 
the models of N agents are not sharable, then it may 
still need just N + 1 models, given the sharing in the 
recursion hierarchy. Thus, sharing could provide sub- 
stantial benefits in tracking even for small N and r. In 
the following, Section 4 examines in more detail the 
model sharing within a group, and Section 5 examines 
sharing within and across recursion hierarchies. 

4    Sharing in Agent-Group Tracking 
Agents that are part of a single group often act in a 
coordinated fashion — executing similar behaviors and 
actions — and thus provide a possible opportunity for 
model sharing. For instance, if D and E are attacking 
L in a coordinated fashion, they may fly in formation, 
execute similar maneuvers etc. However, their actions 
are not perfectly identical — there are always some 
small delays in coordination for instance — which can 
be a possible hinderence in sharing. If the delays and 
differences among the agents' actions are small, they 
need to be abstracted away, to facilitate model sharing. 
Yet, such abstraction should allow tracking of essential 
group activities. 

To this end, one key idea to track an agent-group 
is to track only a single paradigmatic agent within the 
group. Models of all other agents within the group 
are then shared with the model of this paradigmatic 
agent. Thus, a whole group is tracked by tracking a 
single paradigmatic agent. For example, suppose L 
determines one agent in the attacking group, say D, 
to be the paradigmatic agent. It may then only track 
modelj^j}, and share other models, such as modelsJJ 
with modeljj}, reducing its the tracking burden. 

Such model sharing needs to selective, if benefits are 
to outweigh costs. In this case, the following domain- 
specific heuristics help tilt the balance in favor of shar- 
ing by reducing the cost of detection, merging and un- 
sharing: 

• Cost(detect): This involves detecting two or more 
agents (opponents) to be part of a group with 
sharable models. Such a group is detected at low 
cost by testing the agents' physical proximity and 
direction of movement. If these are within the 
ranges provided by domain experts, the correspond- 
ing agents' models are shared. If the agents move 
away from each other (outside of this range) their 
models are unshared. Once outside this range, no 
attempt is made at model sharing — such agents 
are likely to be engaged in dissimilar activities, and 
even if their models are found to be near-identical, 
they are likely to be so for a short time period. 

• Cost(merge): Merging involves the cost of selecting 
a paradigmatic agent within the group. It may be 
possible to select an agent at random from the group 
for this role. However, an agent in some prominent 

position, such as in front of the group, is possibly a 
better fit for the role of a paradigmatic agent, and 
can also be picked out at a low cost. In air-combat 
simulation, an agent in such a position is typically 
the leader of the group of attacking opponents. It 
initiates maneuvers, and others follow with a small 
time-lag. The group leader is thus ideal as a paradig- 
matic agent. Note that a dynamic change in the 
paradigmatic agent does not cause unsharing. 

• Cost(Unshare): Unsharing, however, has a rather 
high cost. For instance, once D and E are de- 
tected to have unshared models, a completely new 
modeljjjj is constructed. Here, the entire statej^jj 
has to be copied to statej^jj. 

The end result is that a particular agent's model is 
selectively executed when the agent breaks away from 
the coordinated group. Otherwise, its model is merged 
with the paradigmatic agent's model. 

5 Sharing in Recursion Hierarchy- 
Models of a single agent across a recursion hierarchy 
are likely to be near-identical to each other, and thus 
they form the second category of models that may al- 
low sharing. We have so far limited our investigation 
of sharing/unsharing to models with r < 3, and specif- 
ically to different models of L, such as modeljjjT and 
modeljvi, at r = 3, with modelj, at r = 1. Other 
models, including those at deeper levels of nesting (r > 
4) are never unshared. For instance, modelj^jj) is 
never unshared from modelJJJ. The motivation for 
this restriction is in part that in our interviews with 
domain experts, references to unshared models at r > 4 
have rarely come up. In part, this also reflects the com- 
plexity of such unsharing, and it is thus an important 
issue to be addressed in future work. 

To understand the cost-benefit tradeoffs of sharing 
recursive models, it is first useful to understand how 
sharing and unsharing may actually occur. One gen- 
eral technique for accomplishing sharing in the re- 
cursion hierarchy is to first let models generate its 
operator hierarchy. As the hierarchy is generated, 
if modelj^pL agrees with an operator^ — that is, 
it would have generated an identical operator]^ £, 
given statejjjk — then it (modeljjQjJ "votes" in 
agreement. This "vote" indicates that that par- 
ticular operator^ from modelj^ is now shared with 
modeljj^jj. This essentially corresponds to the worst 
case strategy introduced in section 2 — given a choice 
among operatorsJ^DI,' *^e one '^at m identical to 
operator^ is selected and shared. 

Thus, the detection/merging cost is low, since this 
can be accomplished without an extensive comparison 
of models. Furthermore, the savings from model shar- 
ing are substantial — as discussed below, unsharing 
occurs over small time periods. Furthermore, the un- 
sharing cost is low, since it does not involve state copy- 
ing. Thus, sharing benefits appear to easily outweigh 
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its costs. 
Unsharing actually occurs because of differences be- 

tween state j, and state^D^. Due-to these differences, 
the recursive modelj^Tjjj cannot generate an operator 
that is shared with operator £. There is then unsharing 
of the operator hierarchies in modelj^T and modelT , 
which may be harnessed in service of deceptive (or 
other) tactics. In the following, Subsection 5.1 focuses 
on one general strategy for such deception. Subsection 
5.2 focuses on a special class of differences between re- 
cursive states — caused by sensor imperfections — and 
the deceptive maneuvers possible due to those differ- 
ences. 

5.1    Deception 

Due to differences between statej^jjj^ and statej,, 
modelj^Dk mav generate an operatorj^nL *na* can" 
not be shared in the operator^ hierarchy. This in- 
dicates to L that D expects L to be engnaged in a 
different maneuver (operatorr JJJJ than the one it is 
actually executing (operator^). In such cases, L may 
attempt to deceive D by abandoning its on-going ma- 
neuver and "playing along" with what it believes to be 
D's expectations. 

To understand this deceptive strategy, consider the 
following case of L's deceptive missile firing. Let us 
go back to the situation in Figure 1-a, although now, 
assume that state^ maintains a secret missile range 
of 30 miles, while statenjj^ maintains the range to 
be 50 miles. The missile range is noted in the un- 
shared portions of the states as shown in Figure 3. At 
a range of 50 miles — given that statej^j}^ notes the 
missile range to be 50 miles — modelLDL suggests 
the execution of a employ-missihrj^^ operator. This 
causes unsharing with operators in modelj^. Employ- 
missile^j^-^ subgoals into get-steering-circlejjy^, in- 
dicating a turn to point at target, as shown in Fig- 
ure 1-b. 

These operators suggest actions for L in order 
to deceive its opponent. L may execute deceptive 
operators^ that create the external actions suggested 
by operatorTjjL without actually launching a mis- 
sile. L therefore executes a employ-missile-deceptivejj 
operator. This subgoals into the get-steering-circle- 
deceptiver operator. This causes the next subgoal, 
of start-B-maintain-turnj^ in modelj^ which actually 
causes L to turn to point at its target, D. This differ- 
ence in modelj^ and modeljjQL causes some unshar- 
ing in their operator hierarchies, as shown in Figure 
4. After pointing at target, modelTjjjj executes the 
fpohjjQjj operator — that is, L believes that D is ex- 
pecting L's fpole to support an actual missile in the air. 
L executes fpole-deceptivej^ without actually firing a 
missile. Thus, with a deceptive maneuver, L convinces 
D that it has fired a missile at a much longer range, 
without actually firing one — forcing D to go on the 
defensive by turning towards beam. 

L can employ a whole class of such deceptive maneu- 
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Figure 4:   Deceptive missile firing:   operator^ and 
operator^L hierarchies are dynamically unshared. 

vers by going along with modeljjjj/s expectation, as 
it did here. This is essentially a general strategy for de- 
ceptive maneuvers, which is instantiated with particu- 
lar deceptive maneuvers in real-time. Yet, this is only a 
first step towards a full-fledged deceptive agent. There 
are many other deceptive techniques and issues that 
remain unresolved, e.g., determining whether engag- 
ing in deception would lead to a globally sub-optimal 
behavior. 

5.2    Sensor Imperfections 

Realistic radar imperfections in this domain also lead 
to unsharing among recursive models. It is useful to 
examine these in some detail, since these are illustra- 
tive of the types of differences that are expected to 
arise in other domains where agents have realistic sen- 
sors. To this end, it is useful to classify the different 
situations resulting from these imperfections as shown 
in Figure 5. As a simplification, these situations de- 
scribe L's perspective as it interacts with a single op- 
ponent for D, and limited to r < 3. Figure 5-a focuses 
on an agent's awareness of another's presence. In the 
figure, Aware<BAZ> denotes someone's awareness of 
an agent named BAZ. Furthermore, subscript L indi- 
cates L's own situation, a subscript LD indicates L's 
tracking of D, a subscript LDL indicates L's recursive 
tracking of D's tracking of L. Thus, the first branch 
point in 5-a indicates whether L is aware of D's pres- 
ence (+Aware£<D>) or unaware (—Aware£/<D>). 
If — AwareT <D> then L can not track D's aware- 
ness. If +Awarej/<D>, then L may believe that D 
is aware of L's presence (+Aware£j) <L>) or unaware 
(—AwareT p<L>). If+Awarejjp<L>, then L may 
have beliefs about D's beliefs about L's awareness: 
+Awareu)ii

<D> or —AwareiiDi(<D>. 
While an agent may be aware of another, it may 

not have accurate sensor information of the other 
agent's actions, specifically, turns, climbs and dives. 
For instance, in Figure 1-d, +Awareji<D>, yet L 
loses radar contact due to D's beam. Figure 5-b 
classifies these situations. Here, +Sensej(<D> refers 
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Figure 5: Classifications by: (a) awareness; (b) accu- 
racy of sensor information. 

to situations where L believes it has accurate sen- 
sor information of D's actions, while —SenseT <D> 
refers to situations as in Figure 1-d, where it does 
not. In either case, L may believe that D ei- 
ther has accurate sensor information of L's actions 
(+Senseu3 <L>) or not (—Sense£j)<L>). Thus, 
in Figure 1-d, while —Senseji<D>, L also believes 
D has lost radar contact due to its 90° beam 
turn (—Sensejj) <L>). Recursion continues with 
+Sense£(£)£<D> and —Sense£]3ji<D>. 

Based on the above classification, L's perspec- 
tive of a situation may be described as a six- 
tuple. For instance, Figures 1-a to 1-c may 
be described as (+Awarejj<D>, +AwareLj)<L>, 
+Awarej|j)ji<D>, +Sense£/<D>, -fSensem <L>, 
+Sensejij)£j<D>). This is the previously introduced 
ideal sensor situation, with a+" awareness and sensor 
accuracy. Based on the six-tuple, 64 such situations 
seem possible. However, many are ruled out — if an 
agent is unaware of another, it cannot have accurate 
sensor information regarding that agent — reducing 
the number of possible situations to 15. 

Within these 15, we have so far examined unsharing 
and deception in the context of one situation, namely 
the ideal situation. We now briefly examine the un- 
sharing and deception possible in the remaining 14 sit- 
uations. Among these 14, there are three that typi- 
cally arise in the initial portions of the combat where 
L believes D is unaware of L (—Awarejjj <L>)- For 
instance, L may have seen D by virtue of its longer 
range radar, but it may have assumed that D is still un- 
aware due to its shorter range radar: (+Awarej/<D>, 
—Awarejij)<L>, —AwareIiDIj<D>, +SenseT <D>, 
—Sensej^rj<L>, — SenseTD£,<D>). In all these 
cases, modelj^jjT is nulC and thus the question of 
sharing with moaelr does not arise. Suppose as the 
aircraft move even closer, D engages in the collision 
course maneuver, which allows L to conclude that 
+Awarerjp<L>. Here, there are two possibilities. 
First, if —Awarejjjjj/<D>, i.e., L believes D believes 
L is unaware of D, there is much greater dissimilar- 

ity between model-r JJJ^ and modelj,. Modelj-jjj^ now 
predicts that L will not engage in combat with D, i.e., 
there will be unsharing even with the intercept^ opera- 
tor. Once again, L may deceive D by acting consistent 
with modelj^j/s expectation, and not turn towards 
D. This is similar to the deceptive strategy introduced 
in Section 5.1. L may then wait till D gets closer and 
then turn to attack. 

The second possibility is -fAwarejjjr <D>. In this 
case, we return to the ideal situation in Figures 1-a 
to 1-c, where unsharing is still possible as in Figure 
4. Furthermore, even with +AwarejjpTj<D>, there 
are situations with —Senseji£j<L>, where L believes 
D cannot sense L's actions. In such cases, L may 
engage in deception by deliberately not acting consis- 
tent with model^pj^'s expectations, e.g., diving when 
modelj^jjiTj does not expect such a dive. Such delib- 
erate unsharing is another type of deceptive strategy 
that among many others, is one we have not examined 
in detail so far. 

6    Experimental Results 
To understand the effectiveness of the agent tracking 
method introduced here, we have implemented an ex- 
perimental variant of TacAir-Soar(Tambe et al. 1995). 
The original TacAir-Soar system contains about 2000 
rules, and automated pilots based on it have par- 
ticipated in combat exercises with expert human pi- 
lots(Tambe et al. 1995). Our experimental version — 
created since it employs an experimental agent track- 
ing technology — contains about 950 of these rules. 
This version can recursively track actions of individu- 
als or groups of opponents while using the model shar- 
ing optimizations, and engaging in deception. Proven 
techniques from this experimental version are trans- 
ferred back into the original TacAir-Soar. 

Table 1 presents experimental results for typical sim- 
ulated air-combat scenarios provided by the domain 
experts. Column 1 indicates the number of opponents 
(JV) faced by our TacAir-Soar-based agent L. Column 
2 indicates whether the opponents are engaged in a 
coordinated attack. Column 3 shows the actual max- 
imum number of models used in the combat scenar- 
ios with the optimizations (excluding temporary model 
unsharing in service of deception). The numbers in 
parentheses are projected number of models — 2JV+1 
— without the model sharing optimization (the actual 
number without sharing should be 0(JVr), but we ex- 
clude the permanently shared models from this count 
— see Section 5). With optimizations, as expected, 
the number of models is N+l when opponents are not 
coordinated, and just two when the opponents are co- 
ordinated. Column 4 shows the actual and projected 
number of operator executions. The projected number 
is calculated assuming 2N+1 models. Column 5 shows 
a two to four fold reduction (projected/actual) in the 
number of operators. Savings are higher with coordi- 
nated opponents. L is usually successful in real-time 
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tracking in that it is able to track opponents' behav- 
iors rapidly enough to be able to respond to them. L 
is unsuccessful in real-time tracking in the case of four 
uncoordinated opponents (with 5 models), and it gets 
shot down (hence fewer total operators than the case 
of 2 opponents). This failure indicates that our opti- 
mizations have helped — without them, L could have 
failed in all cases of 2 or 4 opponents since they involve 
5 or more projected models. It also indicates that L 
may need additional optimizations. 

N Coord? Actual(projct) 
num max model 

Actual(projct) 
total operatrs 

Reduction 
(proj/act) 

1 - 2(3) 143(213) 1.5 

2 No 3(5) 176(314) 1.8 

4 No 5(9) 148(260) 1.8 

2 Yes 2(5) 109(251) 2.3 

4 Yes 2(9) 105(407) 3.9 

Table 1: Improvements due to model sharing. 

7    Summary 
This paper focused on real-time recursive tracking of 
agents and agent-groups in dynamic, multi-agent envi- 
ronments. Our investigation was based on intelligent 
pilot agents in a real-world synthetic air-combat envi- 
ronment, already used in a large-scale operational mil- 
itary exercise(Tambe et al. 1995). Possible take-away 
lessons from this investigation include: 

• Address recursive agent tracking via a uniform treat- 
ment of the generation of flexible/reactive behaviors, 
as well as of tracking and recursive tracking. 

• Alleviate tracking costs via model sharing — with 
selective unsharing in situations where models grow 
sufficiently dissimilar. 

• Track group activities by tracking a paradigmatic 
agent. 

• Exploit differences in an agent's self model and its 
recursive self model in service of deception and other 
actions. 

One key issue for future work is understanding the 
broader applicability of these lessons. To this end, we 
plan to explore the relationships of our approach with 
formal methods for recursive agent modeling(Gmy- 
trasiewicz, Durfee, & Wehe 1991; Wilks & Ballim 
1987). This may help generalize the tracking approach 
introduced in this paper to other multi-agent environ- 
ments, including ones for entertainment or education. 
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Abstract 

Agent tracking involves monitoring the observ- 
able actions of other agents as well as infer- 
ring their unobserved actions, plans, goals and 
behaviors. In a dynamic, real-time environ- 
ment, an intelligent agent faces the challenge 
of tracking other agents' flexible mix of goal- 
driven and reactive behaviors, and doing so 
in real-time, despite ambiguities. This paper 
presents RESC (REal-time Situated Commit- 
ments), an approach that enables an intelligent 
agent to meet this challenge. RESC's situat- 
edness derives from its constant uninterrupted 
attention to the current world situation — it 
always tracks other agents' on-going actions in 
the context of this situation. Despite ambigu- 
ities, RESC quickly commits to a single inter- 
pretation of the on-going actions (without an 
extensive examination of the alternatives), and 
uses that in service of interpretation of future 
actions. However, should its commitments lead 
to inconsistencies in tracking, it uses single- 
state backtracking to undo some of the commit- 
ments and repair the inconsistencies. Together, 
RESC's situatedness, immediate commitment, 
and single-state backtracking conspire in pro- 
viding RESC its real-time character. 
RESC is implemented in the context of intelli- 
gent pilot agents participating in a real-world 
synthetic air-combat environment. Experimen- 
tal results illustrating RESC's effectiveness are 
presented.1 

1    Introduction 
In a multi-agent environment, an automated agent of- 
ten needs to interact intelligently with other agents to 
achieve its goals.   Agent tracking — monitoring other 

1We thank Rick Lewis and Yasuo KuniyosH for helpful 
feedback. This research was supported under subcontract to 
the University of Southern California Information Sciences 
Institute from the University of Michigan, as part of contract 
N00014-92-K-2015 from the Advanced Systems Technology 
Office (ASTO) of the Advanced Research Projects Agency 
(ARPA) and the Naval Research Laboratory (NRL). 

agents' observable actions and inferring their unobserved 
actions, plans, goals and behaviors — is a key capability 
required to support such interaction. 

This paper focuses on agent tracking in real-time, 
dynamic environments. Our approach is to first build 
agents that are (reasonably) successful in agent tracking 
in such environments, and then attempt to understand 
the underlying principles. Thus, the approach is one of 
first building an "interesting" system for a complex en- 
vironment, and then understanding why it does or does 
not work (see [Hanks et at, 1993] for a related discus- 
sion). In step with this approach, we are investigating 
agent tracking in the context of our on-going effort to 
build intelligent pilot agents for a real-world synthetic 
air-combat environmentlTambe et al., 1995]. This envi- 
ronment is based on a commercially developed simulator 
called ModSAF[Calder et al, 1993], which has already 
been used in an operational military exercise involving 
expert human pilots. For an illustrative example of agent 
tracking in this environment, consider the scenario in 
Figure 1. It involves two combating pilot agents — L in 
the light-shaded aircraft and D in the dark-shaded one. 
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Figure 1: A simulated air-combat scenario. An arc on 
an aircraft's nose shows its turn direction. 

Initially, L and D's aircraft are 50 miles apart, so they 
can only see each other's actions on radar. For effective 
performance, they have to continually track these ac- 
tions. Indeed, D is able to survive a missile attack by L 
in this scenario due to such tracking, despite the missile 
being invisible to D's radar. In particular, in Figure 1- 
a, D observes L turning its aircraft to a collision-course 
heading (i.e., at this heading, L will collide with D at 
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the point shown by x). Since this heading is often used 
to reach one's missile firing range, D infers the possibil- 
ity that L is trying to reach this range to fire a missile. 
In Figure 1-b, D turns its aircraft 15" right. L reacts 
by turning 15° left, to maintain collision course. In Fig- 
ure 1-c, L reaches its missile range, points its aircraft 
at D's aircraft and fires a radar-guided missile. While 
D cannot see the missile on its radar, it observes L's 
turn, and infers it to be part of L's missile firing behav- 
ior. Subsequently, D observes L executing a 35° turn 
away from its aircraft (Figure 1-d). D infers this to be 
an fpole turn, typically executed after firing a missile to 
provide radar guidance to the missile, while slowing the 
closure between the two aircraft. While D still cannot 
observe the missile, it is now sufficiently convinced to 
attempt to evade the missile by turning 90° relative to 
the direction of L's aircraft (Figure 1-e). This beam turn 
causes D's aircraft to become invisible to L's (doppler) 
radar. Deprived of radar guidance, L's missile is ren- 
dered harmless. 

Meanwhile, L tracks D's beam turn in Figure 1-e, and 
prepares counter-measures in anticipation of the likely 
loss of both its missile and radar contact. 

Thus, the pilot agents need to continually track their 
opponents' actions, such as turns, and infer unobserved 
actions, high-level goals and behaviors, such as the fpole, 
beam or missile firing behaviors. This agent tracking ca- 
pability is related to plan-recognition[Kautz and Allen, 
1986; Azarewicz et al., 1986]. The key difference is that 
plan-recognition efforts typically focus on tracking a nar- 
rower (plan-based) class of agent behaviors, as seen in 
static, single-agent domains. In particular, they assume 
that agents rigidly follow plans step-by-step. In contrast, 
agent tracking involves the novel challenge of tracking a 
broader mix of goal-driven and reactive behaviors. This 
capability is important for dynamic environments such 
as air-combat simulation where agents do not rigidly fol- 
low plans — as just seen, pilot agents continually react 
to each other's maneuvers. 

Agent tracking and plan recognition are both part of 
a larger family of comprehension capabilities that enable 
an agent to parse a continuous stream of input from its 
environment, whether it be in the form of natural lan- 
guage or speech or music or simulated radar input, as 
is the case here (e.g., see [Rich and Knight, 1990, chap- 
ter 14]). Resolving ambiguities in the input stream is 
a key problem when parsing all of these different types 
of input. One example of the ambiguity faced in agent 
tracking can be seen in L's turn in Figure 1-c. From D's 
perspective, L could be turning to fire a missile. Alter- 
natively, L could be beginning a 180° turn to run away 
from combat. Or L could simply be following its flight 
plan, particularly if it has a much shorter radar range, 
and thus is likely unaware of D. Despite such ambigui- 
ties, D has to track L's actions with sufficient accuracy 
so as to respond appropriately. The novel challenge in 
this domain — at least with respect to previous work in 
plan recognition — is that the ambiguity resolution has 
to occur in real-time. As the world rapidly moves on, an 
agent cannot lag behind in tracking. Thus, if D is late or 
inaccurate in its tracking of L's missile firing maneuvers 

in Figure 1-c, it may not evade the missile in time. 
This paper describes an approach called RESC (REal- 

time Situated Commitments) for agent tracking that ad- 
dresses the above challenges. RESC's situatedness rests 
on its constant attention to the current world situation, 
and its tracking of other agents' actions in the context of 
this situation. Despite its situatedness, RESC does make 
some commitments about the other agent's unobserv- 
able actions, behaviors and goals, and attempts to use 
those in tracking the agent's future actions. In ambigu- 
ous situations, these commitments could be inappropri- 
ate and could lead to failures in tracking — in such cases, 
RESC modifies them on-line, without re-examining past 
world states. Together, RESC's situatedness, immediate 
commitments (despite the ambiguities), and its on-line 
modification of commitments provide RESC its real-time 
character. 

In the following, we first describe the process that 
RESC employs for tracking other agent's flexible and 
reactive behaviors (Section 2). This process enables 
RESC to be situated in its present as it tracks an 
agent's actions. Subsequently, RESC's ambiguity res- 
olution and real-time properties are described in Section 
3. These descriptions are provided in concrete terms, 
using an implementation of the pilot agents in a system 
called TacAir-SoarfTambe et al., 1995], built using the 
Soar architecture [Newell, 1990; Rosenbloom et al., 1991]. 
We assume some familiarity with Soar's problem-solving 
model, which involves applying operators to states to 
reach a desired state. 

2    Tracking Flexible Goal-driven and 
Reactive Behaviors 

In an environment such as air-combat simulation, agents 
possess similar behavioral flexibility and reactivity. 
Thus, the (architectural) mechanisms that an agent em- 
ploys in generating its own behaviors may be used for 
tracking others' flexible and reactive behaviors. Con- 
sider, for instance, D's tracking of L's behaviors in Fig- 
ure 1-c. D generates its own behavior using the operator 
hierarchy shown in Figure 2-a. (The solid lines indicate 
the actual hierarchy, and the dashed lines indicate unse- 
lected options.) Here, at the top-level, D is executing its 
mission — to protect its home-base for a given time pe- 
riod — via the execute-mission operator. Since the ter- 
mination condition of this operator — completion of D's 
mission — is not yet achieved, a subgoal is generated.2 

D rejects options such as follow-flight-plan and run-away 
in this subgoal in favor of the intercept operator, so äs 
to combat L. In service of intercept, D selects employ- 
missile in the next subgoal. However, since D has not 
reached its missile firing range and position, it selects 
get-firing-position in the next subgoal. Skipping to the 
final subgoal, maintain-keading enables D to maintain 

2 A Soar operator has termination conditions — if the op- 
erator's application (or new sensor input) changes the state 
so as to satisfy the termination conditions, then that opera- 
tor and all of its subgoals are terminated. If the termination 
conditions remain unsatisfied, a subgoal is created, within 
which new operators are applied. 
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its heading, as seen in Figure 1-c. 

EXECUTE-MISSION 

1 

INTERCEPT fOLLOW-FLGT-PLAN] 
|_     RUN-AWAY       J 

' 
EMPLOY-MISSILE \SEARCH-&-ACQUIRE\ 

"~~~- 
| CHASE-OPPONENT   1 

^___  L        EVADE                | 

GET-FmiNG-POSmf '   ». 

~~^ 
ACmEVE-PROXMTIY ~-*- 

"~ 
J          ^    ^ | MAINTAIN-HEAD1NG 

D 

(a) Operator      Hierarchy 

EXECUTE-MISSION 

INTERCEPT \FOLLOW-FLGT-PLAN\ 
|_     RUN-AWAY       \ 

' 
EMPLOY-MISSILE | SEARCH-&-ACQUIRE\ 

' ~^^^^ I CHASE-OPPONENT    1 

FBfAL-MISSL-UANVS 
"""'—■•»» r--- 

POWT-AT-TARGET 
'   ■»* 

' "■"•--, 

*» START-MAINTN-TURN 

STATE 
DL 

(b) Operator      Hierarchy 

Figure 2: Operator hierarchies: Solid lines indicate ac- 
tual selections; dashed indicate unselected options. 

The operators used for generating D's own actions, 
such as in Figure 2-a, will be denoted with the subscript 
D, e.g., interceptjy. Operator jy will denote an arbitrary 
operator of D. Statejj will denote the global state shared 
by all of these operators. It maintains all of the dynamic 
sensor input regarding D's own aircraft, such as its head- 
ing and altitude. It also maintains dynamic radar input 
regarding L's aircraft, such as heading, range, collision 
course and other geometric relationships. Additionally, 
it maintains non-sensor information, e.g., D's missile ca- 
pabilities. Together, statep and the operatorp hierar- 
chy constitute the introspectable aspect of D, and in this 
sense may be considered as D's model of its present self, 
referred to as model j). 

Model j) supports D's flexible/reactive behaviors via 
its embedding within Soar; and in particular, via two 
of Soar's architectural features: (i) a decision proce- 
dure that supports flexibility by integrating all available 
knowledge about absolute or relative worth of candidate 
operators right before deciding to commit to a single op- 
erator; (ii) termination conditions for operators that sup- 

port reactivity by terminating operators in response to 
the given situationfRosenbloom et al., 1991]. The point 
here is not that these specific architectural features are 
the only way to yield such behavior, but rather that there 
are such features, and that they can be reused in track- 
ing other agents' behaviors. To illustrate this re-use, we 
assume for now that D and L possess an identical set 
of maneuvers. (Note that this sameness of maneuvers is 
not necessary; all that is required is for D to have an 
accurate model of its opponent's maneuvers.) 

Thus, D uses a hierarchy such as the one in Figure 2- 
b to track L's behaviors. Here, the hierarchy (the solid 
lines in Figure 2-b) represents D's model of L's current 
operators in the situation of Figure 1-c. These operators 
are denoted with the subscript DL. This operatorjjj^ 
hierarchy, and the statepj, that goes with it, constitute 
D'smodelofLormodeljQj^. Within modelpj,, ezecvte- 
mtssionpj^ denotes the operator that D uses to track 
L's mission execution. Since L's mission is not yet com- 
plete, D applies the interceptjyj, operator in the subgoal 
to track L's intercept. The unselected alternatives here, 
e.g., run-awayjy-^, indicate the ambiguity in tracking L's 
actions (however, assume for now that this is accurately 
resolved). In the next subgoal, employ-missilery^ is ap- 
plied. Since L has reached its missile firing position, in 
the next two subgoals, final-missile-maneuverry^ tracks 
L's final missile maneuver, and point-at-targeijyj, tracks 
L's turning to point at D. In the final subgoal, D ap- 
plies the stari-&-maintain-tvrnjyrJ operator to statejjj^, 
which does not (can not) actually cause L turn. Instead, 
this operator predicts L's action and matches the pre- 
diction against L's actual action. Thus, if L starts turn- 
ing to point at D's aircraft, then there is a match with 
modeljjT 's predictions — D believes L is turning to 
point at its target, D, to fire a missile. When L's aircraft 
turns sufficiently to point straight at D's aircraft (Figure 
1-c), the termination condition of the point-at-targetjyj^ 
operator is satisfied, and it is terminated. A new oper- 
ator, push-fire-buttonjyjj, is then applied in the subgoal 
of final-missile-maneuverjyjj- This operator predicts a 
missile firing, although the missile cannot actually be ob- 
served. Statepj- maintains a representation of the mis- 
sile, and marks it with a low likelihood. Following that, 
the fpole-Tightryjj operator predicts L's right turn for an 
fpole. When this prediction is matched with L's turn in 
Figure 1-d, the missile's likelihood is changed to high. 
D now attempts to evade the missile, with beam-rightry. 
(D currently chooses arbitrarily between the execution 
of operatorp and operatorj^T , as it generates its own 
actions, while also tracking L^s actions.) 

The above agent tracking process is related to pre- 
vious work on model tracing in intelligent tutoring sys- 
tems(ITS) for tracking student actions[Anderson et at, 
1990; Ward, 1991]. However, that work has primarily 
focused on static environments. A recently developed 
ITS, REACTfffill and Johnson, 1994], extends model 
tracing to a more dynamic environment. REACT relies 
upon a plan-driven tracking strategy, and deals with the 
more dynamic aspects of the domain as special cases. It 
specifically abstracts away from tracking students' men- 
tal states. In contrast, pilots appear to track their op- 
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ponents' behaviors in more detail. Such tracking is sup- 
ported here via a uniform apparatus for the generation of 
an agent's own flexible/reactive behaviors and tracking 
other agents' behaviors. In particular, operatorjj and 
operatorjjj^ are selected and terminated in the same 
flexible manner. Thus, as statejjj^ changes, which it 
does in reflecting the changing world situation, new 
operatorsjjT may get selected in response. This is key 
to RESC's situatedness — L's on-going actions are con- 
tinually tracked in the context of the current statejjj,. 
For further details on this tracking technique, please 
see[Tambe and Rosenbloom, 1995]. 

3    Real-time Ambiguity Resolution 
Ambiguity manifests itself in two forms in the agent 
tracking process introduced in the previous section. One 
form involves the alternative operators available for 
tracking the other agent's actions, as seen in the dashed 
boxes in Figure 2-b. Given these alternatives, it is diffi- 
cult to make accurate selections of operatorj^, such 
that their predictions successfully match L's actions. 
Should an operatorjjj- selection be inaccurate, in typi- 
cally results in a match failure (if not immediately, then 
in some further operatorpj, application). Thus, in Fig- 
ure 2-b, the operatoruL hierarchy predicts L will turn 
to point at D's aircraft. Suppose this prediction is in- 
accurate, and L turns in the opposite direction. This 
difference in the anticipated and actual action leads to a 
match failure, indicating an inaccuracy in tracking. Sim- 
ilar match failures can also occur if L fails to begin (or 
stop) turning or maintain heading as anticipated. 

A second form of ambiguity is seen in statej}^. 
Statej) L needs to maintain the same types of informa- 
tion as are in statej). Here, there is ambiguity related to 
both the dynamic sensor information and the static non- 
sensor information. With respect to static information, 
there are ambiguities about L's radar and missile capa- 
bilities. Even if these are resolved, there are ambiguities 
about dynamic information, such as whether L has de- 
tected D on radar. For instance, in Figure 1-a, based 
on the static radar range information, D assumes it has 
arrived within L's radar range; but L may or may not 
have detected D, depending on its radar's orientation. 
Such ambiguities in statejjj, are intimately connected 
to ambiguities in operatorjjL, since the operatorjjj- hi- 
erarchy is dependent on tne current statejjj,. Tnus, 
if D assumes it is not detected on L's radar, then the 
intercepipL operator is ruled out, since there is nothing 
for L to mtercept. In contrast, if D assumes L has de- 
tected it, then interceptj^^ is a likely possibility. A sub- 
goal of interceptor predicts L's turn to collision course, 
which is matched by L's turn in Figure 1-a — D now be- 
lieves L has detected it, and L is going to collision course 
to intercept. Note that, if D believes that L has detected 
it, statej)^ needs to maintain the various dynamic in- 
puts that D believes L obtains from its radar regarding 
D's heading, range, geometric relationships etc. Fortu- 
nately, many of these quantities are symmetric and can 
be reused from corresponding quantities in statejj. 

It is difficult to resolve the above ambiguities using 
methods that have been previously suggested in the 

model tracing literature. Ward[Ward, 1991] notes that 
previous model tracing systems have mostly relied on 
communication with the modeled agent to resolve am- 
biguities. In air-combat simulation, such communica- 
tion with enemy pilots is clearly ruled out. Ward's solu- 
tion in the absence of such information is an exhaustive 
backtrack search of all of the different alternatives. In 
the example in 2-b, this involves an attempt to execute 
and match other operator hierarchies — generated by al- 
ternatives such as run-awayj^jj or follow-flight-planry-^ 
— via a systematic backtrack search before committing 
to interceptj^jj. Unfortunately, this search-then-commit 
approach will very likely cause tracking to lag far be- 
hind the rapidly changing world, precluding D from re- 
sponding to L's maneuvers in real-time. Furthermore, 
given the volume of dynamic information on statejjj^, 
the maintenance of multiple old copies of statejjj^ for 
backtracking could itself consume non-trivial amounts 
of space and time. Parallel real-time search of alterna- 
tive modelsTjT could eliminate the backtracking; how- 
ever, we will locus on a sequential solution given the 
implementation technology available to us. Further- 
more, parallelism may not be adequate when faced with 
the expected combinatorics in the number of alterna- 
tives. Borrowing ambiguity resolution methods from the 
plan recognition literature would be yet another possibil- 
ity; but the computational costs (intractability) of tech- 
niques such as automated deduction[Kautz and Allen, 
1986] are a significant concern. 

So instead, we propose a new approach called RESC 
(REal-time Situated Commitments) that addresses the 
above concerns. As seen earlier, RESC's situatedness 
arises from its tracking of L's on-going actions and be- 
haviors in the context of the current state DL RESC's 
commitment is to a single modeljjf,, with a single 
statepL that records the on-going world situation in 
real-time and a single operatorjjj^ hierarchy, that pro- 
vides an on-going interpretation of an opponent's ac- 
tions. Given the intense real-time pressure, RESC does 
not spend time trying to match alternatives; instead, it 
just commits to a single operatorpj^ hierarchy, and any 
facts inferred in statejjj- due to this hierarchy. It then 
tries to use these commitments as context for tracking 
L's future actions. However, in some cases, the commit- 
ments may get withdrawn given RESC's situatedness — 
as statej}j^ changes, it may satisfy the termination con- 
ditions of an operatorjjj^ and thus cause it, and all of 
its subgoals, to terminate. 

When faced with ambiguity, it is possible that RESC 
commits to an inaccurate operator!^ and statejjT, 
leading to a match failure. RESC recovers from sucn 
failures by relying on a method called single-state back- 
tracking, that undoes some of its commitments, result- 
ing in the generation of new operatorjjj^ hierarchies, in 
real-time. Of course, if RESC makes more intelligent 
commitments in the first place — by reducing the am- 
biguity in the situation with which it is faced — there 
will be less of a need for undoing its commitments. Sub- 
section 3.1 first describes strategies — some general and 
some domain specific — used for reducing ambiguities 
in both statepjj and operatorjjj^. Subsection 3.2 then 
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describes single-state backtracking. 

3.1    Reducing Ambiguities 

There are two classes of strategies used in RESC to re- 
solve ambiguities: active and passive. The active strate- 
gies rely upon an agent's active participation in its en- 
vironment to gather information to resolve ambiguities. 
In particular, an automated pilot, such as D, can act in 
its environment and force its opponent L to react and 
provide disambiguating information. Consider again the 
example in Figure 1-a. As discussed earlier, D faces am- 
biguity in statejjj- about whether L's radar has detected 
D. This gets resolved with L's turn to collision course. 
Unfortunately, if L just happens to be on collision course, 
it may not turn any further, and the ambiguity would 
be more difficult to resolve. In such cases, D can ran- 
domly turn 15-20°, as shown in Figure 1-b, causing L 
to react if it wishes to maintain collision course. This 
provides D sufficient disambiguating information — L's 
radar has detected D. Unfortunately, D's actions in ser- 
vice of active ambiguity resolution may interfere with 
its other goals, such as firing a missile at L. In general, 
such interference is difficult to resolve. Therefore, cur- 
rently, active ambiguity resolution is based on a fixed set 
of known maneuvers (supplied by human experts). 

In contrast, passive ambiguity resolution strategies 
rely on existing information to resolve ambiguities. One 
key piece of information is that in this hostile environ- 
ment, an opponent is likely to engage in the most harm- 
ful maneuver. This information is used in the form of 
a worst case strategy for disambiguation. Thus, given 
a choice, D always selects the worst-case operator]^ 
(from its own perspective) while tracking L's actions. 
For instance, if there is ambiguity between run-awayjy^ 
or interceptj^r , D will select interceptj^ j^, which is more 
harmful. Similarly, D resolves ambiguity in the static in- 
formation in statej)£ via the worst-case strategy, e.g., it 
assumes that L's aircraft is carrying the most powerful 
missiles and radar that it can carry. Unfortunately, this 
worst-case strategy can lead to overly pessimistic behav- 
ior. In the absolute worst-case, the only option for D is 
to run away. Therefore, D applies it selectively, typically 
in cases where it has to disambiguate rapidly, and yet no 
other means are available. Thus, as seen above, D does 
not automatically assume detection by L's radar, even 
though that would be the worst-case assumption. 

A second passive ambiguity resolution strategy is test 
incorporation[Bennett and Dietterich, 1986]. The key 
idea is to generate fewer incorrect alternatives in ambigu- 
ous situations. In particular, modeljjj, generates alter- 
native operatorsjj ^ that are tested by matching against 
L's actual actions. Observations regarding these actions 
can be used to avoid generating alternatives that are 
guaranteed to lead to match failures. For instance, in 
Figure 1-d, fpole-rigktj^-^ and fpole-leftj^^ are two al- 
ternatives available to D in tracking L's actions. If D 
already sees L turning to its right, then fpole-leftjyr can 
be eliminated, since it would be guaranteed to lead to a 
match failure. Test incorporation relies on such spatial 
relationships. 

A third passive ambiguity resolution strategy is goal 

incorporation (e.g., see [Van Beek and Cohen, 1991]). 
The key idea here is to resolve ambiguities only to the ex- 
tent necessitated by an agent's goals. For example, given 
the reality of the simulation environment, L's aircraft of- 
ten unintentionally deviates from its intended heading. 
Given such deviations, L sometimes makes corrections 
to its headings. However, D does not really need to 
track and disambiguate these small deviations and cor- 
rective actions. It therefore uses fuzz-box filters that dis- 
regard specified deviations in L's actions. For instance, 
for point-at-targetjijj, which tracks L's pointing maneu- 
ver (Figure 1-c), the fuzz-box filter disregards 5° of de- 
viation in L's heading. Such filtering also helps to avoid 
tracking of detailed aspects of statej^, and avoids am- 
biguities there. 

3.2    Single-State Backtracking in RESC 

Based on the above disambiguation strategies, RESC 
commits to a single statejjr and a single operator JJ ^ hi- 
erarchy, which track L's actions as described in Section 2. 
However, should this cause a match failure, single-state 
backtracking is used to undo some commitments. As its 
name suggests, this backtracking takes place within the 
context of a single statejj^. Starting from the bottom 
of the operatorj) £ hierarchy, operators are terminated 
one by one in an attempt to get alternatives to take their 
place. Some alternatives do get installed in the hierar- 
chy, and possibly change statejjT, but lead to match 
failures. These are also replaced^ until some alterna- 
tive leads to an operatorj^ hierarchy that culminates 
in match success.3 

Why is this process real-time? The main reason is 
that backtracking occurs without a re-examination of 
past sensor input or mental recreation of older statesj^T . 
In particular, while backtrack search would normally in- 
volve revisiting old statespL and reconsidering the dif- 
ferent operatorsjjL possible in each of those states — 
creating an opening for combinatorics — RESC com- 
pletely avoids such computation. Furthermore, although 
RESC does backtrack over the operator hierarchy, there 
are three factors that ameliorate the combinatorics there. 
First, given RESC's situatedness, backtracking remains 
tied to the present statepj^. Thus, while a match fail- 
ure is recognized and the backtrack process begun, L and 
D's aircraft continue to move and turn, changing their 
speeds, headings, altitudes, and relative geometric rela- 
tionships (e.g., range, collision course, etc). Statejjj^ 
is continuously updated with this latest information. 
The backtracking process takes place in the context of 
this continuously changing state. Thus, only those al- 
ternative operatorsj)^ that are relevant to the current 
statej^L get applied. Similarly, in some cases, changes 
in statejjjj cause portions of the operatorj^ hierarchy 
to terminate automatically during the backtrack process. 
In other words, RESC is continuously dragged forward 
as the world changes. Second, RESC does not oblige 
D to address the match failure before D can execute 

3 In a few cases, there are pending changes related to ambi- 
guities in statej)L> e.g., has L detected D? These are applied 
first, hoping they cause changes to operatorjjT and lead to 
success. 
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any of its own operators^). Thus D is free to act to 
the extent it can. Finally, indeed, if the world were to 
magically become static, RESC's strategy will result in 
a complex search, although still within the context of a 
single statejjT . However, it is unclear if this is necessar- 
ily problematic — a static world should possibly merit 
a more thorough search. 

Let us consider some examples of single-state back- 
tracking. As a simple example, suppose D has com- 
mited to the modelpj, in Figure 2-b. Initially, point-at- 
targetryT has match success in that, as predicted, L in- 
deed starts turning towards D(see Figure 3-a for an illus- 
tration). However, L really has decided to run away; so 
it continues turning 180° without stopping when point- 
ing at D (Figure 3-b). This leads to a match failure 
in the operatorjjT hierarchy. Single-state backtracking 
now ensues, terminating operators beginning from the 
bottom of the hierarchy. Finally, interceptjyj^ is termi- 
nated and replaced by run-awayryVj- This predicts L 
to be turning towards its home-base, which successfully 
matches L's actions (Figure 3-c). Thus, D successfully 
applies run-awayiyjj, predicting and matching L's ac- 
tions, without mentally recreating the statejjj^ in which 
L may have initiated its run-away maneuver. 
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Figure 3: L continues to turn to run away. 

A slightly more complex example involves situations 
where L is engaging in a beam maneuver. Here, D ini- 
tially matches fpole-right-Qr. and even infers L's missile 
firing, as part of statejjT . However, as L keeps turning, 
there is soon a match failure, causing D to backtrack 
until beam-rightjyr successfully matches. There are two 
key points here. First, again D is successful in applying 
beam-right^, without mentally recreating the statep^ 
in which L may have initiated its beam maneuver. Sec- 
ond, D's earlier inference of L's missile firing is not re- 
moved, even though it is based on a sequence of operators 
that eventually led to a match failure. This is because it 
is difficult for D to decide if L was initially maneuvering 
to fire a missile and then switched to beam, or if it was 
always engaged in beam. Not knowing any better, D 
does not eliminate the earlier inference from stateJJJ^. 
Fortunately, when aircraft turn 90° to beam, they can- 
not provide radar guidance to their missiles. Therefore, 
with L's beam, D infers that the missile that it ear- 
lier inferred on statejjj, has lost guidance and become 
harmless. The end result is identical to a case where 
D had successfully tracked L's beam maneuver, with- 
out the failed intermediate inference of an fpole-rightj^j^ 
maneuver. 

We have so far found RESC's single-state backtrack- 
ing to be successful in the air-combat simulation domain 
(see Section 4). Given the potential application of this 
approach for other areas of real-time comprehension, it 

is useful to analyze the reasons behind its success. To- 
wards this end, consider first the following simplified and 
abstract characterization of a successful application of 
single-state backtracking: L initiates some maneuver ß 
at time TO. However, at TO, D attempts to match it by 
applying an operator opj^ to stateSV  (which denotes 

stateDL at time TO). At time TO+T, in stateJ^ D 
recognizes a match failure with otjy^. It backtracks and 
applies ßj^jj to state£jr^T. The key observation here is 
that despite the time delay r and the intervening ap- 
plication of opj,, /?DL k successful in predicting and 
matching L's maneuvers, as though it were applied to 
statejjV. Based on this observation, in terms of opera- 
tor preconditions and effects, we can infer at least three 
requirements that need to be met for single-state back- 
tracking to work. In the following, we list these require- 
ments, and illustrate how pilot agents currently adhere 
to them: 

1. The preconditions ofßry^ are satisfied in statej^jj^ 

tn much the same way as in statej^: For pilot 
agents, operator preconditions are expressed so they 
do not test specific positions of aircraft, but rather 
abstracted features of statejjj^ — similar to the 
fuzz-boxes in Section 3.1 — that are unlikely to 
change in r. That is, abstracted features tested by 
preconditions change at a rate smaller than 1/r. 

2. The effects of /?pL when applied to state^r"7 are 
equivalent to the effects of ßm when applied to 
statej)V: This is achieved by expressing operator 
effects relative to some feature of statejjr that is 
unlikely to have changed in the intervening time 
period r. For instance, the effect of run-awayT)^ 
predicts L is headed towards its home base — the 
location of this base is unlikely to change within 
r. Similarly, the effects of operators such as beam- 
righinjj are expressed in relative terms as L turning 
to achieve 90° angle-off, which is an angle formed 
by L's heading relative to the straight line joining 
D and L (while this line does change its position in 
r, given the range between D and L the change is 
small, and gets absorbed by the fuzz-boxes). If the 
effects were expressed instead as turning 90° from 
L's current heading, they would have provided very 
different results at TO and T0+r, defeating single- 
state backtracking. Overall, the above seems possi- 
ble because operators in this environment typically 
strive to achieve positions relative to slowly chang- 
ing reference points, such as turning to a particular 
heading relative to an opponent's aircraft, or rela- 
tive to a waypoint such as the home-base. 

3. The effects o/api, as applied to state^j- are elim- 
inated at some time TO + r before they cause incon- 
sistencies in D '5 response: As seen in an example 
above, even though L's missile firing was inferred, 
and this inference was not "cleaned up" upon recog- 
nition of a match failure, L's future maneuver auto- 
matically nullifies the effect of that inference. For- 
tunately, typical operatorj)^ applications do not 
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commit to such inferences on state JJJ,. For those 
that do commit, these commitments get removed 
by future maneuvers or become irrelevant. 

In some cases, L quickly terminates its maneuver ß 
within time period r, and initiates a new one 7 at time 
TO+T. Here, given RESC's situatedness, at time TO+T, 
D completely skips tracking ßjyx^, and tracks TDJ, in- 
stead. Fortunately, since D's initial attempt is to apply 
worst-case operatorsJJT , there is at least the assurance 
that what is skipped (/?j)i,) is not among the worst of 
the possibilities. 

4    Implementation and Evaluation 
To understand the effectiveness of the RESC approach, 
we have implemented it as part of an experimental vari- 
ant of TacAir-Soar[Tambe et al, 1995J. The current 
TacAir-Soar system contains about 2000 rules, and au- 
tomated pilots based on it have participated in combat 
exercises with expert human pilots. Our experimental 
version — created to investigate the RESC approach — 
contains about 950 of these rules. Proven techniques 
from this experimental version, called TacAir-Soar^50 

are transferred back into the original TacAir-Soar. 
There are at least two aspects to understanding the 

effectiveness of TacAir-Soar*"550. The first aspect is 
whether the current approach enables D, the TacAir- 
Soar11550 pilot agent, to track its opponents' actions 
accurately in real-time. We conducted two sets of exper- 
iments to address this issue. The first set involved run- 
ning Soar-vs-Soar air-combat simulation scenarios (as 
outlined by the human experts). The results from these 
experiments are presented in Table 1. 

Sen. 

num 
Num 

oppnts 

Total 

opertrs 

% operators 

agent trade 

% of colm 2 

in match fail 

1 1 37 8% 0% 

2 1 133 45% 17% 

3 2 167 50% 16% 

4 2 175 54% 17% 

S 4 142 63% 11% 

Table 1: Results of Soar-vs-Soar experiments. 

The first column lists the scenario number. The sec- 
ond column lists the number of opponents that D faces 
in each scenario — this varies from one to four in these 
scenarios. The third column indicates the total num- 
ber of D's operator executions in each scenario. This 
includes operators for D's own actions, as well as for 
tracking opponent actions. The total number provides 
some indication of the comparative complexity of the 
different scenarios. Note that these operators are not all 
applied in a sequence at regular intervals; D often waits 
in between applications as it tries to get into different 
positions. Indeed, despite the differences in the num- 
ber of operators, the total time per scenario is about 
the same, approx 5 minutes. The fourth column shows 
the percentage of operator executions involved in agent 
tracking. This percentage clearly depends on the num- 
ber of maneuvers that the opponents execute, and the 
number of opponents. The key point here is that agent 

tracking is a non-trivial task for D. Furthermore, higher 
percentages of operator executions may be dedicated to 
agent tracking with increased numbers of opponents. 

The fifth column shows the percentage of agent track- 
ing operators involved in match failures (counting oper- 
ators at the bottom of the hierarchy that encountered 
the failure, but not their parents). The main point here 
is that the overall percentage of these operator is low; at 
most 17% of the agent tracking operators are involved 
in match failures. 

In all of these cases, D is successful in tracking op- 
ponents in real-time so as to react appropriately. Even 
in cases where D encounters match failures, it is able 
to backtrack to track the on-going activities in real-time 
and respond appropriately. However, as the number of 
opponents increases, D does face resource contention 
problems. With four opponents, it is unable to track 
the actions of all of the agents in time, and gets shot 
down (hence fewer operators). This resource contention 
issue is under active investigation[Tambe, 1995]. 

Our second set of experiments involved Soar-vs- 
ModSAF simulated air-combat scenarios. ModSAF- 
based[Calder ei al., 1993] pilot agents are controlled 
by finite state machines combined with arbitrary pieces 
of code, and do not exhibit high behavioral flexibility. 
While D was in general successful in agent tracking in 
these experiments — it did recognize the maneuvers in 
real-time and respond to them — one interesting issue 
did come up. In particular, in one of the scenarios here, 
there was a substantial mismatch in D's worst assump- 
tions regarding its opponent's missile capabilities and the 
actual capabilities — leading to tracking failures. Deal- 
ing with model mismatch is also an issue for future work. 

The second aspect to understanding the effectiveness 
of TacAir-Soar^50 is some quantitative estimate of the 
impact of agent tracking on improving D 's overall perfor- 
mance. In general, this is a difficult issue to address (see 
for instance the debate in [Hanks tt al., 1993]). Nonethe- 
less, we can at least list some of the types of benefits 
that D accrues from this capability. First, agent track- 
ing is crucial for D's survival. Indeed, it is based on 
agent tracking that D can recognize an opponent's mis- 
sile firing behavior and evade it. Second, agent tracking 
improves D's overall understanding of a situation, so it 
can act/react more intelligently. For instance, if an op- 
ponent is understood to be running away, D can chase 
it down, which would be inappropriate if the opponent 
is not really running away. Similarly, if D is about to 
fire a missile, and it recognizes that the opponent is also 
about to do the same, then it can be more tolerant of 
small errors in its own missile firing position so that it 
can fire first. Finally, agent tracking helps D in pro- 
viding a better explanation of its behaviors to human 
experts. (Such an explanation capability is currently 
being developed[Johnson, 1994]). If human experts see 
D as performing its task with an inaccurate understand- 
ing of opponents' actions, they will not have sufficient 
confidence to actually use it in training. 
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5    Lessons Learned 
This paper presented an approach called RESC, for 
agent tracking in real-time dynamic environments. Our 
investigation was based on a real-world synthetic envi- 
ronment that has already been used in a large-scale op- 
erational military exercise[Tambe et al., 1995]. Lessons 
learned from this investigation — as embodied in RESC 
— are as follows: 

• To track other agents' flexible and reactive behav- 
iors: Reuse the architectural mechanisms that sup- 
port an agent's own flexible/reactive behaviors in 
service of tracking others' behaviors. 

• To address ambiguities in real-time: Quickly com- 
mit to a single interpretation, and use single-state 
backtracking to recover from erroneous commit- 
ments. 

• To address real-time issues in general: Keep track- 
ing firmly tied to the now, i.e., to the present state. 

One key issue for future work is investigating the gen- 
erality of these lessons by applying RESC to other com- 
petitive and collaborative multi-agent domains. One 
candidate that has been suggested is a real-time multi- 
robot domain where robots track other robots or humans 
to collaborate in a task by observation (rather than by 
communication)[Kuniyoshi et al, 1994]. Beyond agent 
tracking, there is some indication that RESC could apply 
in other real-time comprehension tasks. For instance, a 
RESC-type strategy has been previously used in a real- 
time language comprehension system[Lewis, 1993]. This 
system also commits to a single interpretation of an in- 
put sentence despite ambiguity, and attempts to repair 
the interpretation in real-time when faced with parsing 
difficulties. We hope that investigating these broader 
applications will lead to an improved understanding of 
agent tracking and comprehension. 
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1. Abstract 
The Soar/IFOR project has been developing 

intelligent pilot agents (henceforth IPs) for 
participation in simulated battlefield environments. 
While previously the project was mainly focused on 
IPs for fixed-wing aircraft (FWA), more recently, the 
project has also started developing IPs for rotary- 
wing aircraft (RWA). This paper presents a 
preliminary report on the development of IPs for 
RWA. It focuses on two important issues that arise in 
mis development The first is a requirement for 
reasoning about the terrain — when compared to an 
FWA IP, an RWA IP needs to fly much closer to the 
terrain and in general take advantage of the terrain for 
cover and concealment The second issue relates to 
code and concept sharing between the FWA and 
RWA IPs. While sharing promises to cut down the 
development time for RWA IPs by taking advantage 
of our previous work for the FWA, it is not 
straightforward. The paper discusses the two issues in 
some detail and presents our initial resolutions of 
these issues. 

2. Introduction 
The Soar/IFOR project has been developing 

intelligent pilot agents (IPs) for simulated battlefield 
environments (Laird et aL, 1995, Rosenbloom, et at, 
1994, Tambe et aL, 1995). Until Summer 1994, the 
project was focused on building IPs for simulated 
fixed-wing aircraft (FWA), including air-to-air 
fighters and ground-attack aircraft Since July 1994, 
we have begun developing IPs for simulated rotary- 
wing aircraft (RWA), specifically, AH-64 Apache 
attack helicopters. 

While there are similarities in an RWA and an 
FWA pilot's missions—e.g., employing weapons on 
targets, flying mission-specified routes — there are 
also some important differences. One key difference 
is reasoning about the terrain. For example, an RWA 
pilot's mission can involve flying Nap-of-the-earth 
(NOE), where it needs to fly only about 25 feet above 
ground level, while avoiding obstacles. It may also 
involve flying through a valley, or around a forested 
region. The mission may also involve hiding 
(masking) behind a ridge, popping up to spot enemy 
targets, and remasking in a new hiding position. 
Figure 1 provides an illustration of this type of terrain 
reasoning. It presents a snapshot taken from 
ModSAFs plan-view display (Calder et aL, 1993), of 

a typical scenario involving Soar-based RWA IPs. 
There are two RWA in the scenario, just behind the 
ridge, indicated by the contour lines. The other 
vehicles in the figure are a convoy of "enemy" 
ground vehicles—tanks and anti-aircraft vehicles— 
controlled by ModSAF. The RWA are 
approximately 25 miles from the convoy. The IPs 
have hidden their helicopters behind the ridge (their 
approximate hiding area is specified to them in 
advance). They unmask these helicopters by popping 
out from behind the ridge to launch missiles at the 
enemy vehicles, and quickly remask (hide) by 
dipping behind the ridge to survive retaliatory 
attacks. They subsequently change their hiding 
position to avoid predictability when they pop out 
later. 
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Figure 1: A snapshot of ModSAFs simulation of an 
air-to-ground combat situation. 

Thus, the development of RWA IPs brings up the 
novel issue of terrain reasoning, not addressed in 
previous work on Soar/IFOR agents. There has been 
much work on terrain reasoning in ModSAF in their 
development of semi-automated forces or SAFs 
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(Calder et al., 1993). That work has so far primarily 
focused on ground-based SAFs (e.g., (Longtin, 
1994)), although there is a recent effort focused on 
terrain reasoning for RWA (Tan, 1995). Outside the 
arena of automated forces, terrain reasoning in the 
form of route planning and execution has been 
addressed extensively in AI and Robotics. The focus 
of much of this work is on 2D routes (Denton and 
Froeberg, 1984, Khatib, 1986, Lozano-Perez and 
Wesley, 1979, Mitchell, 1990) — and this category 
includes some previous work within Soar (Stobie et 
al., 1992) — although some efforts have also 
attacked the 3D route planning problem (Böse et al., 
1987, Rao and Arkin, 1989). Other aspects of terrain 
reasoning such as tactical situation assessment 
(McDermott and Gelsey, 1987) and hiding (Stobie et 
aL, 1992) have also received some attention, although 
not nearly as much as route planning. As discussed in 
Section 3, the pure route planning approaches from 
mis literature are unlikely to address the terrain 
reasoning challenge facing the RWA IPs, which is to 
accomplish these tasks in real-time, given a realistic 
3D terrain database. A hybrid solution combining 
some abstract plans with reactivity is currently being 
investigated. 

Given the similarities between the FWA and RWA 
IPs, concept and code sharing between the two is a 
real possibility. Sharing would speed up 
development of RWA IPs by taking advantage of our 
previous work on FWA. However, the differences — 
such as the terrain reasoning capability above — 
imply that sharing is not straightforward. There have 
been some previous efforts aimed at facilitating reuse 
of code and concepts among Soar systems. These 
efforts have typically focused on reuse of individual 
capabilities, such as inductive learning (Rosenbloom 
and Aasman, 1990), or natural language (Lewis, 
1993, Rubinoff and Lehman, 1994) capabilities. The 
novel issue here is that a large fraction of the FWA IP 
structure is potentially reusable in developing RWA 
IPs and such reuse needs to be facilitated. 

The rest of this paper provides more details on 
these two issues. Section 3 focuses on terrain 
reasoning. Section 4 discusses the issue of code and 
concept sharing between Soar-based FWA and RWA 
IPs. We will assume some familiarity with the Soar 
architecture (Laird, Newell, and Rosenbloom, 1987, 
Rosenbloom, et al., 1991). 

3. Terrain Reasoning 
The overall terrain reasoning tasks for an RWA IP 

may be subdivided into two categories. The first is to 
fly from a given source to a destination, while 
abiding by mission specified constraints regarding 
the flight methods. A flight method primarily 
specifies maintenance of a certain air-speed and 
altitude above ground level. In particular, a 
high-level flight requires that the RWA fly more than 

200 feet above ground level with air-speed as high as 
145 knots. A low-level flight requires that the RWA 
fly 100-200 feet above ground level, while 
maintaining a maximum air-speed of 100 knots. A 
contour flight requires the RWA to fly between 
25-100 feet above ground level, but with a maximum 
air-speed of 70 knots. An NOE flight requires the 
RWA to fly within just 25 feet above ground level, 
with a maximum air-speed of 40 knots. Additionally, 
an NOE flight may require that an RWA fly through 
a valley along a hillside, or through a narrow clear 
corridor in a forested region. The second category of 
terrain reasoning tasks involves an RWA IP's 
activities once it successfully follows its route to its 
battle area, and possibly engages enemy vehicles. Its 
activities in this area involve selecting and occupying 
good hiding positions (behind a ridge or a forested 
region) and flying between hiding positions while 
remaining concealed from a possibly mobile enemy. 
It may also involve reasoning about possible enemy 
hiding positions. 

For both categories of tasks, one key issue for an 
RWA IP is to execute them in the context of a large- 
scale and realistic 3D terrain database, with features 
such as rivers, ridges, valleys, hills and forested 
regions. A second key issue is that given its 
complexity, the cost of sensing and processing large 
tracts of the terrain database is non-trivial. A third 
related issue is that an IP has to exhibit human-like 
behavior in performing these terrain reasoning tasks. 
Thus, it should not make use of information that a 
human pilot is unlikely to obtain. For example, as 
with a human pilot, an IP should plan routes using a 
map of the terrain database (which possibly may be 
inaccurate), rather than using the actual terrain 
database (which would always be 100% accurate). A 
final issue is that an IP has to perform its tasks in 
real-time. The following two subsections illustrate 
how these issues are addressed for each of the two 
types of tasks above. 

3.1. Route Flying 
For die task of route flying, one possible approach 

for addressing the above issues would be to use one 
of a variety of path-planning methods that provides a 
very detailed 3D point-to-point route, with little need 
or freedom to modify the given route (Stobie et al., 
1992, Böse et al., 1987, Rao and Arkin, 1989, Denton 
and Froeberg, 1984). One such approach, based on 
weighted-region path planning (Mitchell, 1990), is to 
conceptually divide a map of the terrain into 3D cells 
(cubes), assign an appropriate cost to each cell that 
reflects mission-specified constraints, and then search 
for a minimum cost path through the cells. One 
advantage of such an approach is that an RWA IP 
need not sense the terrain database in any detail, but 
rather just enough to follow its plan. In addition, the 
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low sensing overhead would facilitate real-time task 
performance. However, there are several problems 
with such an approach. First given the complexity of 
the terrain, this approach would require a significant 
initial computational effort to create and then search 
the cells. Second, it could be wasteful given the 
realism of the RWA model and its flight controls — 
it will not be possible for a Soar-based IP to precisely 
control an RWA to follow such a detailed route, and 
it will end up having to reactively improvise the path 
orreplan. The original planner could potentially take 
these realistic flight controls into account when 
developing a plan — so that no on-line replanning 
may be required — but that would further increase 
the complexity of planning. Third, if the map of the 
terrain is inaccurate or incomplete, the plan generated 
could be inaccurate as well. Even if the map were 
completely accurate (or if the IP were using the 
terrain database itself rather than a map), there could 
still be deviations from the planned route caused by 
an unexpected encounter with hostile or friendly 
vehicles. Thus, an IP may not be able to rely on just 
its original planned route; it may need to replan. 
Finally, human pilots typically do not rely on such 
detailed plans; and thus in forcing IPs to follow such 
plans, we are likely deviating from our goal of 
building human-like IPs. 

So instead, a Soar-based IP follows a hybrid 
strategy that combines a plan-based and reactive 
strategy. In particular, it relies on more abstract route 
plans, that provide it just two to three intermediate 
points.1 The IP then executes these route plans while 
reacting to sensory information that enables it to 
abide by the mission specified constraints. For ideal 
human-like IPs, this sensory information should be 
precisely what a human pilot would obtain visually 
by looking out the window. Unfortunately, for an IP, 
such visual processing is likely to be extremely 
complex and expensive. Therefore, special 
inexpensive sensors have been designed that 
approximate such visual processing. One such sensor 
is the look-ahead altitude sensor or LAS sensor. LAS 
is slaved to the parameters supplied by the IP. The IP 
sets parameters for LAS that specify a lookahead 
range and orientation, which in turn specifies a line 
segment of specific length and orientation originating 
from the IP's current location.- Once these 
parameters are set, LAS scans the terrain database 
repeatedly (in fact, each time ModSAF schedules the 
agent for execution), and returns the highest altitude 
value along the specified line segment For instance, 
to fly NOE, an IP sets LAS's parameters to a 
lookahead range of 50 meters, and orientation in the 

direction of its flight The pilot reacts to LAS's 
response by modifying the altitude of its helicopter to 
be approximately 25 feet above the highest point2 

The top half of Figure 2 shows a pilot agent 
making use of LAS to fly NOE. The shaded portion 
in the figure is a profile of the terrain, while the 
dashed line is a profile of the helicopter flying NOE. 
The straight lines indicate LAS's lookahead range 
while scanning the database. The bottom half of 
Figure 2 indicates a longer lookahead range, and 
change in the flight profile that that results. 

Figure 2: Illustrations of lookahead altitude sensor. LAS scans 
the terrain database each time the agent Is scheduled 
for execution (illustrations not from an actual run). 

The precise value of the lookahead range is 
determined to a large extent by the speed of the 
RWA. In particular, for an NOE flight an IP 
currently flies conservatively at a speed of 20 knots. 
With 50 meters lookahead, that gives it about 5 
seconds to change its altitude. The other flight 
methods, specifically contour, low-level and high- 
level flight require that the RWA fly at a higher 
speed. This in turn requires that the IP set a longer 
lookahead range to give itself more time to react 
Speed is however not the only factor determining the 
lookahead range. It is also dependent on the type of 
flight profile desired. For instance, at its speed of 80 
knots, an IP could potentially sustain the altitude 
required for its low-level flight with a lookahead of 
just 200-300 meters. However, the flight profile 
generated follows the terrain much too closely—it is 
not as smooth as the flight profile that results from a 
human pilot's low-level flight (at least as indicated 
by the experts). Therefore, the low-level flight uses a 
much longer lookahead range of 1500 meters. The 
high-level flight uses a lookahead range of 5000 
meters. 

Unfortunately, long lookahead ranges in LAS 
could potentially hinder an IP's real-time 
performance. Therefore, to lower its cost, LAS 
samples precisely 100 points along the specified line 

'At present, these abstract routes are provided by a human; 
although given mat they are abstract, planning these routes is 
expected to be much less complex. 

2RWA agents In ModSAF appear to follow a similar technique 
(Tan, 1995). 
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segment irrespective of the lookahead range. Thus, 
despite the variation in the lookahead range in Figure 
2, LAS will scan precisely 100 points. This sampling 
resolution may appear to be very low, with the 
potential of missing high altitude cliffs. However, 
LAS's repeated scanning in effect improves its 
sampling resolution. In particular, since an RWA 
progresses towards its destination between two scans, 
successive scans sample slightly different points. In 
fact, each successive scan samples 99 points in the 
neighborhood of the points from its previous scan (on 
the same line segment), and one new point This 
resolution could still be insufficient for some types 
terrain. For instance, if the terrain is an urban 
landscape with a sparse population of pin-shaped 
high-altitude structures,3 there is a small possibility 
that LAS may miss those in its scanning. In such 
cases, there may be a need to increase the sampling 
resolution. However, the 100 point scans have so far 
proved adequate over the terrain database used in our 
experiments (the RWA have not crashed). 

Figure 3 presents a flight profile from an actual run 
of a Soar-based RWA using the contour flight 
method. Figure 4 presents a flight profile from 
another run of a Soar-based RWA over 
approximately the same terrain, but using the NOE 
flight method. The shaded portion indicates the 
terrain, while the dashed line indicates the actual 
flight profile. IPs smoothen out the flight by using 
fuzz-boxes (McDermott and Davis, 1984) to avoid 
excessive altitude adjustments. 
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Figure 3: Illustration of a contour flight 
from an actual run. 

Similar low-cost, LAS-type sensors approximating 
a human pilot's visual input are currently being 
designed to enable the RWA pilots to fly through 
valleys. 
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Figure 4: Illustration of an NOE flight 
from an actual run. 

3.2. Hiding 
Once an RWA IP reaches its mission-specified 

battle area, it needs to engage in hiding-related tasks. 
In general, a battle area could be of an arbitrary 
(convex) shape, or specified in terms of landmarks, 
such as trees or rocks. The IP should be capable of 
locating good hiding positions within this area and 
move between hiding positions while remaining 
concealed from its enemy. This second terrain 
reasoning capability, at least at this level of 
generality, is very much an issue for future research. 
At present, we have restricted the battle area to be a 
rectangle. One side of this rectangular area, typically 
coinciding with a ridge or a tree line, is a mission 
specified line segment This is in essence considered 
to be an imaginary wall, and any movement behind it 
is assumed to be hidden from the enemy. An RWA 
IP hides in a small rectangular area (defined with a 
width of 100 meters) behind this imaginary wall. 
When relocating to a new hiding position, it uses the 
NOE flight method to remain at a low altitude and 
thus hidden behind the wall. The approximations of a 
wall and a rectangular area for hiding are both based 
on our previous work in the groundworld domain. 
Groundwork! involved a simulated terrain with 
random configurations of horizontal and vertical 
walls, where an intelligent agent had to hide behind a 
wall to escape from another agent pursuing it (Stobie 
et al., 1992, Tambe and Rosenbloom, 1993). 

4. Sharing and Reuse 
RWA pilots' missions have some requirements — 

such as, identifying enemy vehicles, firing missiles at 
target vehicles and flying in formation—in common 
with those of FWA pilots. These commonalities may 
be exploited to cut down development time by 
sharing or reusing both code and concepts from Soar- 
based FWA pilots in the development of RWA pilots. 
For instance, for an FWA IP, the code for firing a 
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missile involves three operators that orient its aircraft 
towards its target, then push a fire button to actually 
launch the missile, and then guide the missile (should 
the missile require guidance) via radar (or other) 
illumination of the target These three operators can 
be reused in an RWA IP. At present, a Soar-based 
RWA IP has 44 operators, with 25 (that is about 
57%) reused in some form from the Soar-based FWA 
IPs. The 19 new operators are those involved with 
terrain reasoning tasks such as flying NOE, masking 
and unmasking. This sharing is accomplished simply 
by loading in appropriate operators from an FWA IP 
code in an RWA IP. 

Differences in concepts and terminology, however, 
make some of the sharing problematic. For example, 
for FWA pilots engaged in air-to-air missions, the 
concept of launch-acceptability-region or LAR of a 
missile combines both the range to a target and the 
target aspect (angle between the target's current 
heading and the straight line joining the target and the 
FWA pilot's current locations). Thus, if a target is 
heading towards the FWA pilot with a 0° target 
aspect, the missile may be fired from a long range; 
but the range is reduced substantially if the target has 
a 180° target aspect In contrast for an RWA pilot, 
the target aspect is irrelevant in calculating a 
missile's LAR — the missile may be fired at an 
equally long range irrespective of the target aspect 
This creates a significant difference in the concept of 
a missile LAR for an FWA and an RWA IP, making 
the sharing of missile-LAR-related code difficult 
There is an accompanying difference in the 
terminology as well — the RWA pilot refers to the 
missile LAR as a missile constraint 

At least some of these apparent discrepancies in 
the two IP's concepts — and potentially their 
terminology—could be resolved if the agents reason 
about the concepts from first principles. For instance, 
agents could calculate a missile's LAR from first 
principles, based on the relative velocities (speed and 
direction) of the missile and the target Since an 
FWA IP's target in air-to-air combat is a fighter jet 
moving at a speed mat may be only a half to a fifth its 
missile speed, its angle of movement (target aspect) 
becomes an important factor in calculating LAR. In 
particular, a target moving towards the FWA allows a 
missile to be fired from a much longer range; while a 
target that is moving away requires that the missile be 
fired from a much closer range, so that the missile 
may catch up with the target before expending all its 
fuel. In contrast, an RWA IP's target is moving two 
orders of magnitude slower than its missile — the 
angle of the target's movement has a negligible 
impact on the missile range. In other words, with the 
first principles calculations, the target aspect 
discrepancy automatically disappears. It will appear 
important in FWA IP's calculations, and negligible in 
an RWA IP's calculations. 

While such calculations from first principles would 
facilitate sharing, the calculations themselves may be 
prohibitively expensive, and hinder real-time 
performance. Soar's chunking (learning), could 
potentially compile such first principles calculations 
into new rules and alleviate this cost However, that 
remains an issue for future work. We are currently 
relying on a lower cost alternative, where a 
problematic aspect of the agent code is rewritten 
when in reuse. 

5. Current Status and Future Work 
As of February 1995, the RWA agents are capable 

of performing a complete writ mission, which 
involves flying to a battle area using one of the 
possible flight methods, followed by masking, 
unmasking, firing missiles at targets, and relocating 
to a different masking location between missile 
firings. We have run scenarios with up to four RWA 
IPs executing the attrit mission. 

At present the RWA IPs can fly in coordination, in 
pairs. Extending mis work to enable coordinated 
mission execution involving a platoon or a company 
of RWA agents (with a platoon and a company 
commander), is at the top of our agenda for future 
work. Agents at higher echelons of command, such 
as a company commander, may also bring up issues 
of communication and mission planning, which we 
have currently not addressed. Other issues for future 
work, mentioned in previous sections, include 
improvement in terrain reasoning for hiding, and in 
code/concept sharing among Soar agents. 
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